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Abstract—An analytical stability criterion for bounding of 
quadrupeds with asymmetrical mass distribution is developed in 
this work.  Bounding is found to be passively stable when the 
dimensionless pitch moment of inertia of the body is less than 

β− 21 , where β is a dimensionless measure of the asymmetry.  
The criterion is derived under the assumptions of infinite leg 
stiffness and no energy loss.  Simulation results show that the 
criterion is independent of the value of leg stiffness and a 
conservative estimate of the critical inertia value when energy 
losses are modeled with linear damping.  Body symmetry appears 
to be more favorable to stable bounding than asymmetry, but 
only slightly so in practicality. 
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I. INTRODUCTION 
The success of Raibert’s [14] locomotion control 

algorithms in generating dynamically stable gaits for his 
monopod, biped, and quadruped robots has inspired the 
development of a number of subsequent analytical models that 
provide further theoretical understanding of the experimental 
results.  Koditschek and Bühler [8] investigated the vertical 
dynamics of a model of Raibert’s monopod with nonlinear and 
linear spring laws using different parametric simplifications.  
They presented a stability analysis using discrete dynamical 
system theory and demonstrated that the existence of period-2 
behavior was very similar to the experimentally observed 
“limping gait”.  Vakakis et al. [18] developed a more complete 
model of the system by relaxing the assumption that thrust was 
exerted instantaneously.  They constructed the global 
bifurcation diagram, showing that the period-doubling cascade 
leads to chaos and that an appropriately selected duration of 
thrust can ensure stable period-1 behavior.  M’Closkey and 
Burdick [11] further extended this to a two degree-of-freedom 
model that included both forward and vertical hopping 
dynamics.  Their global bifurcation diagrams developed for 
both approximate and exact return maps showed that the 
period-doubling behavior is preserved under lateral motion.  
They also derived an analytical estimate of stance time to be 
used in the foot placement algorithm.  Li and He [9] argued 
that the nonlinearity and discontinuity of the locomotion 
dynamics severely limit the usefulness of the discrete 
dynamical system theory.  They combined perturbation and 

energy balance methods to study the dynamics and stability of 
hopping in both a nonlinear and linear spring model. 

Raibert’s quadruped was capable of trotting, pacing, and 
bounding [15], but the majority of quadruped analysis has 
focused on pitch stability in bounding.  Murphy [16] developed 
a model of a planar quadruped with one massive front leg and 
one massive rear leg to study control of vertical motion, 
forward velocity, and body attitude.  In simulation, he found 
that the model maintained a stable bounding gait without active 
attitude control when a dimensionless moment of inertia was 
less than unity.  Neishtadt and Li [12] proposed an analytical 
proof of this stability criterion using a simplified model that 
neglected forward motion and assumed a small pitch angle.  
With fixed levels of damping in the legs or across the hip 
joints, asymptotical stability with respect to change in energy 
was obtained.  Berkemeier [1] analyzed a similar model, 
formulating approximate return maps for both bounding and 
pronking, the latter being an approximation of trotting or 
pacing in the planar case.  Berkemeier’s results also indicate 
that bounding is passively stable in pitch when the 
dimensionless body inertia is less than unity.  In pronking, 
however, he found the stability to exhibit a coupling between 
height and inertia.  

In all of these quadruped models, the body mass is 
symmetrically distributed such that the center of mass 
coincides with the geometric center of the body.  Indeed, this 
matches the design of Raibert’s quadruped [15], and body mass 
symmetry has characterized other bounding quadruped robots 
built to date: Scamper2 [4], SCOUT II [13], Patrush-I [6], and 
Tekken-I [7].  In contrast, most quadruped animals have an 
asymmetrical mass distribution with the mass center located 
closer to the shoulder joints than to the hip joints [2] [10].  As a 
result, the front legs tend to provide more vertical thrust, while 
the rear legs provide more longitudinal thrust [3] [5].  
Schmiedeler and Waldron [17] investigated these and other 
effects of body asymmetry in their impulsive model of 
quadruped galloping, but they did not analyze stability. 

This paper develops a general bounding stability criterion 
that is applicable to quadrupeds with asymmetrical body mass 
distribution.  The objectives of the work are to assess the 
impact of asymmetry on stability and to provide an analytical  



 
Figure 1.  

II. 

Schematic of bounding model. 

tool to aid in the design of quadruped robots.  An asymmetrical 
mass distribution offers some potential advantages such as 
exploiting the specialized functions of the front and rear legs.  
The remainder of the paper is organized as follows.  Section II 
describes the bounding model, and the equations of motion and 
stability criterion are developed in Section III.  Section IV 
presents simulation results that validate the criterion, and 
conclusions are presented in Section V. 

MODEL DESCRIPTION 
The planar quadruped model, shown in Fig. 1, is identical 

to Berkemeier’s [1] with the exception of the asymmetrical 
mass distribution, represented by the parameter d, the distance 
between the mass center and the geometric center of the body.  
In the figure,  is the body mass, l  is one half the length 
between the shoulder and hip joints, k is the stiffness of the leg 
spring, and b is the coefficient of the linear damper in the leg.  
The legs are assumed to be massless.  In bounding, the legs 
operate in front and rear pairs, so the two front legs are 
modeled with a single leg, as are the two rear legs.  Thrust is 
provided by instantaneously changing the free length of the leg 
spring when the leg is maximally compressed.  The model 
includes only pitch angular motion and vertical translation of 
the body, so forward motion is neglected.  The heights of the 
rear and front legs can be expressed, 

m

 ( ) ( ),f rz z l d z z l dθ θ= − − = + + ,  
where  is the height of the mass center and z θ  is the pitch 
angle of the body, which is assumed to be small and measured 
positive in a counterclockwise sense.  The subscripts “ f ” and 
“ r ” indicate quantities associated with the front and rear legs, 
respectively.   

III. 

A. 

STABILITY ANALYSIS 
The formulation in this section follows closely the work of 

Neischtadt and Li [12], the most significant departure being the 
consideration of the entire bounding cycle rather than simply 
one half of it.  For a symmetric body, the full cycle can be 
divided into two symmetric halves, one in which the front leg 
contacts the ground, and one in which the rear leg contacts the 
ground.  Stability analysis of either half, therefore, directly 
addresses stability of the entire cycle.  With an asymmetric 
body, however, the two portions of the cycle are no longer 
symmetric, so analysis of only one portion does not provide 

information about the entire cycle.  In this work, the two 
portions of the cycle are referred two as the “rear half cycle” 
and the “front half cycle” despite the fact that their durations do 
not in general represent exact halves of the cycle. 

To make the calculations in this section tractable, the 
damping and thrust in the legs are assumed to be negligible, as 
is common to the work of Neishtadt and Li [12] and 
Berkemeier [1]; therefore, there is no energy loss during the 
motion.  These assumptions are relaxed in the simulation 
results presented in Section III to validate the stability criterion 
derived below. 

Normalization of Hamiltonian System 
With the coordinates chosen appropriately, the Hamiltonian 

of this system is equivalent to the total energy.  The 
Hamiltonian during the flight phase is given by, 

 2 2
0

1 1
2 2

H mz I mgzθ= + + , (1) 

where g  is the acceleration of gravity and the “dot” notation 
indicates derivatives with respect to time .  The Hamiltonian 
does not explicitly depend on time, and its value is invariant, so 
a conservative Hamiltonian system is obtained. 

t

1) Rear-Normalization 
The Hamiltonian of the system when the rear leg contacts 

the ground is given by, 

 ( )2
0 2

r
r r

k
lH H z z= + − , (2) 

where  is the stiffness of the rear leg and  is the height of 
the hip joint when the leg is at its free length.  Normalized 
variables are introduced in order to simplify the analysis, 
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This procedure is referred to as “rear-normalization” since it 
only applies to the rear half cycle.  Note that it differs from the 
normalization of Neishtadt and Li [12].  After normalization, 
the height of the rear leg becomes, 
 ˆˆ ˆrz z θ= + . (4) 
Dividing both sides of (2) by  gives, 2( )+m l d

 ( )22 2
ˆ1 1 ˆ ˆˆ ˆˆ ˆ ˆ ˆ

2 2 2
r

r r r
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The corresponding conjugate momenta of  and ẑ θ̂  are, 
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Rewriting (5) in terms of the conjugate momenta yields, 
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In the rear half cycle, the equations of motion are given by, 
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2) Front-Normalization 
When the front leg contacts the ground in the front half 

cycle, the Hamiltonian is, 

 ( )2
0 2

f
f f

k
lH H z z= + − , (7) 

where fk  is the stiffness of the front leg.  Here, a “front-
normalization” of variables that is only applicable in the front 
half cycle is performed. 
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The height of the front leg becomes, 
 ˆˆ ˆfz z θ= − . (9) 
Dividing the Hamiltonian in (7) by m l  yields, 2( − d

k̂
)

 ( )22 21 1 ˆ ˆˆ ˆˆ ˆ ˆ ˆ
2 2 2

f
f f fH z I g z zθ θ= + + + − . (10) 

The conjugate momenta of  and ẑ θ̂  in the front half cycle are, 
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Rewriting (10) in terms of conjugate momenta gives, 
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In the front half cycle, the equations of motion become, 

 
( )

( )

ˆ
ˆ ˆ

ˆ

ˆ ˆ ˆˆ ˆ ˆˆ ˆ, , ˆ

ˆ
ˆ ˆ ˆˆ .

ˆ

f f f
f

z

f
z f f

H H H
z p k z

p p

H
p k z g

z

θ
θ

,θ θ
θ

θ

∂ ∂ ∂
= = = − = − −

∂ ∂ ∂

∂
= − = − − −

∂

 (11) 

For convenience, the “hat” notation is omitted in the remaining 
analysis, but all of the quantities presented are either rear or 
front normalized. 

B. Poincaré Map 
A Poincaré map is used for the stability analysis of 

bounding with each half cycle divided into phases: Top-to-
Touchdown, Touchdown-to-Liftoff, and Liftoff-to-Top.  The 
model falls freely from a maximum or “top” height in its flight 
phase with the initial conditions 0 0 0 0( , , , )θ θz z , where 0 0z =  
and .  Without loss of generality, the rear leg is the first 
to contact and leave the ground before the body reaches a 
different maximum height, which then marks the start of the 
Top to Touchdown phase in the front half cycle.  When the 
body reaches its maximum height at the end of the front half 
cycle, the state is

0 0θ <

6 6 6 6( , , , )θ θz z .  The system has a periodic 
trajectory if the following equality constraints are satisfied: 
 6 0θ θ= , and 6 0θ θ= . 

}

}

 
No condition on the vertical height of the mass center is 
necessary because it is not independent of these other two 
conditions. 

The orbits of the Poincaré map corresponding to the fixed 
energy level Hamiltonian are periodic.  Therefore, the stability 
is considered from cross section  to cross 

section 

0 0 0{ 0, 0z θ∑ = <

6 6 6{ 0, 0z θ∑ = <  on the Poincaré map.  With the 
original definitions of the conjugate momenta, each cross 
section is coordinated by ( ), pθθ

:

, independent of the rear and 
front normalizations.  The Poincaré map is expressed as, 
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and is linearized as, 

 6 0

6 0

p pθ θδ δ
δθ

(12) 


. 

The eigenvalues of the  matrix A  indicate the stability of 
a periodic solution. 

Motion with Infinite Leg Stiffness C. 
In order to further simplify the calculations, the leg 

stiffnesses  and  are assumed to approach infinity, so the 
time spent in the Touchdown-to-Liftoff phase approaches zero.  
A new variable  is defined.  The derivative of  
with respect to time  is given by, 

p

 rg+ = − ,  
so the rate change of  is finite.  Since the time interval of 
ground contact is infinitesimal,  remains constant across the 
impact.  Therefore, 
 1 zp pθ θ + . (13) 1

The impact between the leg and the ground is assumed to be a 
perfectly elastic collision, so the total energy of the system is 
conserved, 

 ( )2
1 2 2z r rH g z H= − = . (14) r

After the impact, the angular position of the body and the 
height of the mass center remain the same as those before the 
impact.  Therefore, 
 ,  . (15) 1 2z z=
Applying (15) to (13) and (14) yields, 
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Through a similar procedure, the equations of motion in the 
front half cycle are obtained as, 
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D. 
1) 

Hamiltonian Stability Analysis 
Derivation of  

Linearization of the Poincaré map around the periodic 
trajectory yields a matrix  such that, 
 ) ( 6 6,pθ θδ δθ .  )
The operator  is defined in (12) and is the product of 
matrices , where 1 1, ) ( , )θ θδθ δ δθ− − →i ip  and 

1 ~ 6i = . 
i



The derivation of matrix 2A  is as follows.  From (14) and 
(16), 

 2
2 1

2
2

1 1
r r

r r
r r

Ip H p I
I I 1

1I pθ θ θ
−

= − − +
+ +

 1
1 0

A
R L

 
=  

 
, 3

1 0
1

A
R L L

 
=  

 
,  

where, . (18) 

Differentiating (18) with respect to 1pθ  gives, 
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In the front half cycle, the matrices 4A , 5A , and 6A  are, 
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.  Since the collision between the legs and the ground is perfectly 

elastic, it is assumed that, 
 2 1z zp p= − ,  2 1p pθ θ= − . (21) 2) 

0

Stability Analysis 
Note that in the most general case, (21) is not necessarily 
satisfied because the angular velocity and vertical velocity 
following the rear leg’s impact could differ from those 
following the front leg’s impact.  Through these assumptions, 
the asymmetry of a bounding gait in this analysis is not related 
to the asymmetrical angular velocities in the two half cycles, 
but to the asymmetrical body structure.  Simulation studies 
discussed in Section IV, however, indicate that this limitation 
does not significantly affect the validity of the derived stability 
criterion.  From (13) and (21), 

The linearized return maps for the rear and front half cycles 
are given by, 
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In order to combine (27) and (28) to investigate the properties 
of an entire stride cycle, a transformation between rear-
normalized and front-normalized quantities is necessary.  
Noting the difference between the normalizations, the 
transformation can be simply expressed as, 

 1 1zp pθ = − . (22) 
Therefore, 
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Differentiating (18) with respect to rH  yields, 
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where the diagonal entries of A  are, 
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When the rear leg contacts the ground, the normalized height of 
the rear leg  is equal to zero, which gives rz 1 1 0z θ+ = .  
Applying this condition to (14) gives, 
 1 1r r r r rH H g z H g θ= − = + . (25) The characteristic equation of the matrix A  is, 

 ( ) ( )2 0tr A det Aλ λ− + = ,  Substituting (24) and (25) into (23) yields, 
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. (26) where ( )tr A  is the trace of A  and ( )det A  is its determinant.  
The eigenvalues of A  are given by, 
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, Since the determinant of matrix A  is 1, the system is stable if 
( ) 2tr A < .  The stability condition becomes, 
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W .  E. Stability Criterion for Bounding 
A new variable β  is defined as d lβ = , where 0 1β< < .  

The dimensionless moments of inertia defined in (3) and (8) 
can be expressed in terms of β  as, 

Matrices 1A  and 3A  for the rear half cycle are derived in a 
similar fashion. 



IV. SIMULATION RESULTS 
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The right hand side of (30) is, 
 . (32) 11 22 2 0A A+ − <
Substituting and factoring (32) yields, 
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A number of simulations were performed to examine the 
validity of the stability criterion (36) for finite values of leg 
stiffness and for non-zero leg damping and thrust.  All 
simulations were executed in Simulink using fixed-step 
Dormand-Prince integration.  For the results presented here, k 
is 30 kN/m, m is 30 ,  is 0.35 m , and  is 0.06 , so by 
application of (36), the critical value of the dimensionless 
moment of inertia is 0.971.  Figs. 2, 3, and 4 each plot 30 full 
bounding cycles.   

kg l d m

The first term in the denominator is negative, so it can be 
concluded that (33) is satisfied if  since, 2

0 1 β− + <I
2(3 1) 3(β= + +I4 2 2 2 2

0 0 03 3 6 3 1) 0β β β β+ − + + − >I I . 
Therefore, 
 2

0 1I β< − .  

The left hand side of (30) is rewritten as, 
 . (34) 11 22 2 0A A+ + >
Substituting and factoring (34) gives, 
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2
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In Fig. 2, the bounding gait is stable when 0I  has a value of 
0.967 (less than the critical value), and the asymmetry of the 
gait is clearly seen by the two different values for the height of 
the mass center when the front and rear legs are maximally 
compressed (i.e. the two different local minima in the orbit).  In 
Fig. 3, the bounding gait is unstable when 0I  has a value of 
0.975 (greater than the critical value).  These two plots, and 
additional simulation results not presented here, indicate that in 
the absence of energy loss, the stability criterion (36) is valid 
regardless of the value of leg stiffness in the model.  The 
criterion was derived with the assumption of infinite leg 
stiffness, but simulation results for very small stiffness values 
show   no   dependence   of   the   critical   inertia   value   on   leg  

 

where, 
 2 3

0 0 06 2 2β β β β β β= − + + − +I IU I , 
2 2
0 04 1 2 4β β= + − + +V I I . 

The denominator in (35) is identical to that in (33), so it is 
again negative.  For brevity, the details are not presented here, 
but by calculating the extreme values of the numerator in (35) 
and examining its values along the boundaries for the 
acceptable ranges of 0I  and β , it can be shown that, 

( ) ( ) 2 2 0− + = − <U V U V U V . 
Therefore, (35) is satisfied, as is the left hand side of (30), 
regardless of the values β  and 0I  take on in their prescribed 
intervals. 

Hence, the bounding motion is passively stable for a 
quadruped with an asymmetrical body provided that, Simulation of bounding as  without energy loss. 0 0.967I =Figure 2.  
 2

0 1I β< − . (36) 
Neishtadt and Li’s [12] and Berkemeier’s [1] stability criterion 
for a symmetrical body, simply that I0 is less than unity, is 
embedded within (36) because 0β =  in the symmetric case.  
Since the range of dimensionless inertia values for which 
passively stable bounding can be achieved with a symmetrical 
body is larger than that for an asymmetrical body, it can be 
concluded that the asymmetry is at least somewhat detrimental 
to stability.  In a practical sense, however, the value of β  is 
typically small - about 0.2 for most biological quadrupeds [2] 
[3] [5] [10].  Therefore, unless the asymmetry is extreme, the 
critical value of dimensionless inertia is nearly the same as in 
the symmetrical case.  With a well designed system 
characterized by dimensionless inertia far from the critical 
value anyway, asymmetry in body mass distribution does not 
pose significant problems for generating stable bounding gaits. 

 

Simulation of bounding as  without energy loss. 0 0.975I =Figure 3.  



The authors hope that this work will enable robot designers 
to consider the merits of body asymmetry in developing 
quadrupeds capable of efficient, dynamically stable 
locomotion.  The results indicate that the asymmetrical body 
mass distribution common in biological quadrupeds, but rare in 
robotic quadrupeds does not have a significantly adverse effect 
on pitch stability in bounding.  
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