
Abstract. The problem of the spatio-temporal construction of
leggedmovements involves structural freedoms due to the multi-
link structure of the extremities, kinematic freedoms of the
stepping cycle, and interextremity coordination freedoms,
whose purposive organization is established by means of appro-
priate synergies, i.e. additional functional links the brain's
control system forms. The main focus of attention in this work
is on the kinematic and coordination synergies of the legged
movements of humans and animals. The comparative historical
analysis of experimental data and modelling metaphors concen-
trates on obtaining a unified description, whereas the ultimate
mathematical metaphor reduces to space-time geometry, with
base step synergies as its invariants. Thus, the concept of a
synergetic organization for biomechanical movement freedoms
is transformed to the geochronometry concept, actually a mod-
ification ofMinkowskian geometry. To determine the spectrum
of possible geochronometries, the consequences of a generalized
`postulate of a constant speed of light' are studied and different
models of wave chronometers compared.

1. Introduction

Generally speaking, the Anglo-French term locomotion refers
to the translational displacements of arbitrary mechanical
objects in space. In a more narrow sense, however, it is
typically applied to biomechanical objects. For example, it is
common to speak of locomotion of single-celled organisms,
animals, and man, but such word combinations as locomo-
tion of an automobile or airplane may sound strange. The
term `locomotion' was first introduced into wide use in
biomechanics by Marey [37]:

``The most characteristic form of motion in animals is
doubtless locomotion. It is important to point out the laws
which are common for all forms and manifestations of
locomotion. But we do not know a task more difficult than
the assimilation of acts as different as flying and creeping, the
running of a horse and swimming of a fish.''

The resolution of the difficult problem aimed at `assim-
ilating acts' of various forms of locomotion is a separate
interesting topic relating to evolutionary biomechanics. In the
present paper, however, we confine ourselves to `the assimila-
tion of acts' of a single variety of locomotion, namely stepping
movements, which is very `popular' in the animal kingdom,
from arthropods to anthropoids.

If universal mechanisms of stepping movements are to be
elucidated, e.g. those shared by the cockroach and man, a
special research strategy needs to be applied in accordance
with the principles considered in Section 2. To this effect,
different metaphors of stepping movement organization are
compared, which lead to different modes of gait description
and, therefore, to different research strategies.
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The use of dissimilar metaphors of stepping movement
organization offers different ways of formulating kinematic
control problems. However, we preferred the geochrono-
metric approach. The theoretical aspects of this approach is
discussed in Sections 3 and 4 focused on two versions of
geochronometry: fundamental (`postulate-based') and con-
structive (`procedure-based'). The names of the versions are
borrowed from A Einstein.

The subject-matter of Sections 3 and 4 may be of
independent interest to physicists since geochronometric
justification of locomotion synergies involves the discussion
of the conceptual basis of relativistic kinematics which is
traditionally referred to as the special theory of relativity
(STR).

The notion of the system of base invariants is extensively
used in definitions of geochronogeometries; the relationship
of this notion with the Kleinian concept of geometric
invariants is discussed in the Appendix.

2. Synergetics of stepping movements

Each science is approaching a mathematical precision

which it will sooner or later achieve. The mind knows

no rest till it creates a theory to explain known facts.

EMarey

This section is largely devoted to kinematic rules of stepping
movements in man and animals (from bipeds to myriapods).
There has been a long-standing interest in this subject. Suffice
it to say that already Aristotle [1] called attention to the
possibility of a general `diagonal' organization of the gait in
animals having different numbers of legs and the existence of
different types of gaits, namely, the diagonal gait and amble,
in tetrapods:

``Among terrestrial animals some fly, others move over-
ground either by walking or crawling; aquatic animals either
swim or walk. Quadrupeds and myriapods move with
diagonal gaits. The lion and the camel amble.''

This excerpt suggests that the verbal mode of defining
gaits in animals with synphased and counterphased leg pairs
may be the oldest one. In the context of our paper, it is
essential that this approach distinguishes the simplest
coordination synergies of locomotory movements even
though these synergies do not exhaust the entire stock of
coordination rules for the construction of locomotory acts;
rather, they form only a minor part of this stock.

It is evident from the mechanical point of view that spatial
displacements (translational, vibrational, rotational) require
certain degrees of freedom. This general thesis of mechanics
equally refers to biomechanical systems and is supplemented
by cybernetic considerations concerning the number of
potential and indispensable freedoms for controlling locomo-
tory acts.

The construction of living organisms and their locomo-
tory systems during the course of evolution was characterized
by so to say libernetic altruism manifested as redundant
freedoms of functional self-organization of vital activity.
The accomplishment of this task required organization of
movements including locomotory ones. There is little doubt
that the redundant degrees of freedom (RDFs) in motor end
organs is only the visible part of the `freedoms iceberg' of any
living system, from a single cell (amoeba) to a man. A key
principle of biological evolution appears to consist for all time
in providing significantly more freedoms for all organisms
than they are able to utilize throughout their lifespan.

On the other hand, from the cybernetic standpoint a free
system is the uncontrollable system incapable of any goal-
seeking activity such as locomotory or manipulation move-
ments. The essence of any control [50] is in active overcoming
of various RDFs intrinsic, in particular, to motive (locomo-
tor) systems and program-algorithmic support (including
both the `hardware' and `software' components). This
essence also makes itself evident in the creation of means of
autonomous automation in the form of skills, stereotypes,
habits, and synergies.

2.1 Step kinematics
The very first systematic instrumental studies of locomotion
in man and horses, designed to elucidate its biomechanical
mechanisms, were undertaken by EMarey over 100 years ago
[37]. These studies were carried out with the use of pneumatic
sensors, accelerometers, and recording equipment (portable
multichannel mechanical recorders) specially invented by the
author for the purpose.

The pioneering experimental techniques proposed by
Marey, which were later supplemented with chronophoto-
graphy, cyclography and cinematography, created the basis
for further laboratory research and yielded a large volume of
comparative data on locomotion in a good few animals (see
Refs [7, 15, 61, 75 ± 86]). For all that, the research programme
proposed by Marey with a view to elucidating the laws of
locomotory movements (similar to Kepler's laws of planetary
motion) has never been fully implemented for the lack of an
adequate mathematical formulation.

Our research programme is likewise oriented to the
deducing of the laws of locomotory movements and, in this
sense, can be regarded as a continuation of the Marey
programme. There are, however, important methodological
and metaphorical differences.

We think that Marey's programme is impossible to
complete in principle using only the notograms and support
patterns, very popular in the locomotor systematics of
quadrupedal gaits [15, 61]. It will be demonstrated below
that the programme of locomotion studies as formulated by
Marey can be fully implemented only if the following
conditions are met:

Ð the spatio-temporal approach is used, taking into
consideration both temporal and spatial characteristics of
stepping movements, and

Ð a synergetic view of the organization of movement
coordination is adopted with regard for the freedoms of
constructing locomotory movements.

2.1.1 What is `synergy'? According to the current semantic
content of the term `synergy', all laws of biomechanical
movements are obscured in synergies. However, such a
generalized view of synergetics of locomotory and other
movements in different organisms has taken long time to
develop.

The notion of synergy was first introduced into physiol-
ogy by Charles Sherrington in the early 20th century to define
cooperative interaction between different groups of muscles
contributing to the realization of a whole locomotory act (see
Ref. [10]). Later on, N A Bernshte|̄n [10] suggested a more
accurate formulation of the motor coordination problem; he
reduced it to overcoming the SDFs of a motor organ and
proposed distinguishing muscular synergies as major compo-
nents of motor skills. Then, I M Gel'fand, V S Gurfinkel',
M L Tsetlin, and I M Shik [17] introduced an expanded
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interpretation of synergies as modes of movement control,
which ``decrease the number of independent parameters of a
system under control''. In this way, basic notions of
biosynergetics came into being and underwent the initial
semantic development in the framework of neurophysiologi-
cal interpretation of biomechanical problems related to
movement construction and formation of motor skills.

Locomotory movements are highly automated synergies
Ð that is, the number of RDFs of locomotory acts is minimal
(in fact, there are no `redundant' freedoms). Therefore, the
notion of RDFs of locomotory acts may be very fruitful for
theoretical reasoning but is highly indeterminate as far as the
experimental identification and analysis of latent and virtual
freedoms are concerned.

2.1.2 Partition of problems. From the very beginning, Marey
avoided simplification of the problems pertaining to the
examination of locomotory acts and tried to understand all
the components of stepping movements [37]:

``Human walk, seemingly so simple at first sight, is in fact
very complicated especially if its component motions are
considered.''

The complexity of kinematic patterns of stepping move-
ments is largely due to the fact that the general kinematic
control, say of a step length or period, is effected through
multilink extremities. In other words, it involves control of
the extremity configuration, i.e. joint angles. Even more
complicated is the dynamic control strategy oriented to
generating joint forces and moments necessary to form
kinematic synergies [8, 65, 67]. Considering it premature to
discuss dynamic aspects, we confine ourselves solely to
kinematic problems and the simplest dynamic interpreta-
tions.

Problems pertaining to the control of multilink leg shapes
in the support and swing phases, on the one hand, and those
of kinematic step control, on the other hand, can be
partitioned and studied separately because they are charac-
terized by different multitudes of freedoms:

(1) configuration freedoms assuring diversity of spatial
forms of multilink extremities;

(2) kinematic freedoms which ensure a variety of locomo-
tion velocities and forms (walking, running, jumping).

A complete spatio-temporal representation of stepping
movements including consecutive changes in the configura-
tion of a multilink extremity during the step cycle is provided
by stick metachronograms which are normally recorded in a
plane version, i.e. projected onto the vertical (sagittal) plane
(Fig. 1a).

N A Bernshte|̄n [10] rightfully considered metachrono-
grams to be a notable methodological achievement ofMarey.
Their principal advantages (compared with photography and
cinematography) are maximum compression of space-time
information about a locomotor system and fixation of the
most important portion necessary for kinematic and dynamic
studies (provided relevant data on the inertia properties are
available). Bernshte|̄n himself and his coworkers markedly
improved the metachronogram-based technique. At present,
even more sophisticated computerized videosystems are
available for three-dimensional recording of biomechanical
and other movements which automatically digitize (at a
frequency of 100 frames per second or more) the coordinates
of the selected points of an object, then construct the
corresponding metachronograms, and feed them to a moni-
tor screen.

2.1.3 RRS Ð road reference system. Figure 1a shows a
metachronogram for five marker leg points: 1 Ð hip joint
(HJ), 2Ð knee joint, 3 Ð ankle joint, 4 Ð heel, and 5 Ð toe
(toe-cap of the foot). The horizontal (xk) and vertical (zk)
coordinates of the five points xk � �xk; zk� 0, k � 1; . . . ; 5 have
been initially related to the road reference system (RRS)
connected with the road whereon a man is walking. The
instantaneous leg configuration is described by a set of five
vectors

Xleg � fx1; x2; x3; x4; x5g ; �2:1�

while the metachronogram is a multitude of configurations
Xleg�t� for the discrete sequence of moments with a constant
time interval Dt. A metachronogram obtained with respect to
the RRS is called transit because it represents a passage
(`transit') of the legs and the body with respect to the
supporting substrate.

Because the whole step or locomotor cycle (LC) is divided
into two distinct periods (a support phase and a swing phase),
the general characteristics of the LC (the step length L and
period T) include the corresponding parts Tÿ and T�
(support and swing durations, respectively), while Lÿ and
L� are the support and swing components of the step length.
The graphical representation of these step length components
using a metachronogram is shown in Fig. 1a.
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When the foot in contact with the soil during a Tÿ-long
support phase is fixed, the basal point travels at a constant
locomotion speed v and covers the distance Lÿ � vTÿ;
throughout a T�-long swing phase, the distance covered is
L� � vT�. Evidently, the sum of these two distances is
equivalent to the step length, i.e. the distance covered by the
body during period T:

L � Lÿ � L� � v�Tÿ � T�� � vT : �2:2�

But the same distance L is covered by the foot during a
shorter swing phase, that is for time T� � Tÿ Tÿ (Fig. 1a, c),
because in this phase the foot is moving faster than the body,
namely at a speed of U � u� v, where u is the foot velocity
with respect to the body. Hence, the step length may be
defined as

L � UT� � uT� � vT� � Lÿ � L� : �2:3�

Using this and Eqn (2.2), there are two ways to determine the
support length:

Lÿ � uT� � vTÿ : �2:4�

Stepping movements of human legs resemble those of a
pendulum, especially in the swing phase. However, two types
of pendulum, normal and inverted, are conceivable in the
RRS for different step phases, i.e. the swing and the support.
The pendulum of the former type is suspended from an upper
suspension point in HJ (in swing phase), while the latter has
the lower pivot (in support phase).

2.1.4 LRS Ð locomotor reference system. Even in the case of
steady-state locomotion at a certain speed v, no individual
point of the body including the center of mass moves at a
constant speed equal to v. Therefore, an `inertial` reference
system, hereinafter referred to as the locomotor reference
system (LRS), can be obtained by the artificial introduction
of a `basal ' point moving with a velocity of locomotion and
taken to be the origin of LRS. For all practical purposes, the
basal point for steady-state locomotion is found by means of
a linear approximation to the HJ coordinates x1�t� and z1�t�.
The transition from RRS (2.1) to LRS:

xk�t� �
ÿ
xk�t�; zk�t�

� 0
! ÿ

xk�t� ÿ vt; zk�t�
� 0 � ÿ yk�t�; zk�t�� 0 � yk�t� ; �2:5�

corresponds to a Galilean transformation.
After transition to LRS, the transit metachronogram is

transformed to a pendulum one (Fig. 1b), more adequate to
the pendulum interpretation of leg stepping movements.
Here, HJ serves as a natural pendulum suspension point in
both phases, which undergoes horizontal and vertical oscilla-
tions with a relatively low amplitude. The asymmetry of leg
oscillations in the support and swing phases is manifested in
different sequences of three-link configurations and, accord-
ing to Eqn (2.4), in different velocities of the foot motion in
these phases.

Leg swinging in LRS produces a characteristic figure of a
support triangle (Fig. 1b) traced out by a straight line which
connects the two extreme points of the leg, the hip joint x1�t�
and the toe x5�t�. The length of this line is called the functional
or telescopic leg length. The base of the support triangle is as
long as the support length (2.4). In other words, the quantity

Lÿ measures the double amplitude of locomotory leg
oscillation.

Time scans of horizontal and vertical displacements of
points xk�t� can be examined separately, i.e. as time-
dependent graphs xk�t� and zk�t�. A kinematic description
of stepping locomotion regardless of leg configuration
requires the knowledge of only two trajectories (Fig. 1c):
one of HJ, x1�t� (to determine the current locomotion
velocity), and the other of the front tip of the foot (toe) x5�t�
(to determine spatial and temporal stride parameters). When
only the horizontal components of the displacements,
fx1�t�; x5�t�g, are taken into account, the leg is represented
as a horizontal oscillator rather than a plane pendulum. The
parameters used in formulas (2.2) ± (2.4) characterize spatio-
temporal properties of the toe target trajectory x5�t�.

In the course of evolution, the complicated kinematics
and dynamics of spatial motion of multilink extremities have
been adapted to the organization of goal-directed movements
of distal segments. That distal trajectories are goal-oriented is
fairly well evident from manipulation movements [34]. But
the distal targeting principle is undoubtedly applicable to
locomotor movements too. We shall call the locomotor
trajectory of the distal portion of human foot (the toe) or
animal (both vertebrate and invertebrate) legs by the same
name, target trajectory (TT), and denote it by the symbol Z as
prompted by its zigzag shape.

Thus, the kinematic description of stepping movements,
independent of anatomical features of the extremity, is
represented by the space-time parameters of TT Z.

2.1.5 Ballistic metaphor. Strictly speaking, portions of TT Z
corresponding to the swing phase (Fig. 1c) lack linearity.
They are roughly approximated by two parabolas. This
means that the leg moves under the effect of a more or less
constant force as a localized equivalent mass, first uniformly
accelerated and then uniformly retarded. Formally, the
description of the TT shape in the swing phase can be
simplified by means of `straightening', that is by substituting
a linear TT portion for the nonlinear one.

The replacement of the parabolic swing-phase portion by
a linear one actually means simplification of the form of
dynamic control. In other words, permanent force actions are
replaced by impulse ones (theoretically, by d-impulses)
triggered only at the beginning and the end of the swing
phase. The initial impulse is necessary to ensure that the leg
mass at rest acquires a constant speedU � u� v with respect
to the ground, while the final impulse stops the leg's motion.

Simple kinematics of stepping locomotion described by
piecewise linear TTs corresponds to a similarly simple
dynamic picture of a locomotor system composed of three
masses fm0;m1;m2g, each capable of a horizontal rectilinear
displacement. Here, the mass m0 is taken to conventionally
represent the equivalent mass of the human body, while two
other masses m1 and m2 are equivalent leg masses which,
under normal conditions, can be assumed equal, i.e.
m1 � m2 � m (the `mass model' of man is also characterized
by the condition that the total leg mass is identical to the body
mass: m1 �m2 � 2m � m0).

Th e ho r i z on t a l b a l l i s t i c s mod e l. The body is
represented by a mass m0, and the legs by identical masses
m, while stepping movements are due to force interaction
between the body mass and leg masses.

In the ballistic model, control of stepping movements is
reduced, on the one hand, to determining the instants of time
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of triggering force impulses responsible for the onset and
cessation of the step cycle and, on the other hand, to setting
the impulse size which determines the leg swing velocity and
thus the step lengthL. The horizontal ballisticsmodel appears
to better describe just walking in which vertical excursions of
both the feet and the body are minimal. If the three-mass
ballistic model is to be applied to the simplified dynamic
representation of running movements, it should be supple-
mented by vertical components of impulse forces underlying
the interaction between `leg' and `body' masses.

2.2 Basic parameters
Previous descriptions of stepping movements in man referred
to normal conditions of locomotion (a horizontal walkway,
even and hard-surfaced, in the absence of an extra load). In
the forthcoming discussion, similar conditions for human and
animal locomotion are assumed to be fulfilled. Moreover,
locomotion will hereinafter be regarded as steady-state
(which means that such quantities as locomotion velocity v,
step period T, and step length L are not affected by the
passage of time), unless stated to the contrary.

2.2.1 Kinematic uniformity principle. A kinematic description
of locomotion of an arbitraryN-pody animal is reduced to the
parametric definition of a set of TT ZN � fZ1; . . . ;ZNg,
which may be regarded as the determining set of a locomotor
system. In the case of steady-state locomotion, all TTs have
similar locomotor cycles (LC) identical in terms of general
characteristics (step length L and period T). Then, each TT
Zk, where k � 1; . . . ;N, possesses translational symmetry, i.e.
it undergoes self-coincidence upon a shift of the same integer
number of step lengths and periods. However, the inhomo-
geneity of the TT system should be taken into consideration if
the basic parameters of ZN are to be identified.

The minimum number of basic parameters of aZN system
is feasible if and only if it exhibits a maximum number of
symmetries, that is when the initial events of LC (viz.
steppings on or `touches-down') give rise to a regular space-
time `Bravais lattice'. In such a case, the set ofZN may be said
to possess `crystal' organization.

The steady-state condition does not guarantee uniform
locomotion, while the number of variants of the nonuniform
realization of stepping locomotion depends on the number of
legs N.

Vertebrates are known to have either two (bipedal birds
and man) or four (quadrupedal lizards, turtles, dogs, horses,
etc.) legs, while invertebrate animals have at least six legs
(hexapedal cockroaches and other insects); crayfish, crabs,
scorpions, and spiders have eight walking legs, and myria-
pods from 12 to 100 ormore legs. A bilateral set of allN legs is
naturally categorized into the following groups:

Ð contralateral pairs (pairs of legs of one body girdle or
segment);

Ð ipsilateral rows (all legs on one body side, right or left).
If n is the number of legs in a single ipsilateral row, then

N � 2n is their total number.
Given a large number of legs, at least three different

locomotor problems must be evidently partitioned:
(1) generation of LC for each leg;
(2) temporal coordination of LC phases between different

legs, and
(3) spatial distribution of support intervals.
Despite anatomic dissimilarities, different legs of one

organism are involved in the collective performance of a

general locomotor task, that is they ensure the body travel.
Maintaining a constant velocity of locomotion, they have
similar step lengths and periods. Moreover, there are
normally no heterogeneities. In other words, the normal is
characterized by:

Th e k i n ema t i c h omog en e i t y p r i n c i p l e. The
locomotor system ZN � fZ1; . . . ;ZNg represented by a set of
TTs has the maximum number of symmetries, i.e. all TTs are
congruent and show a regular distribution in space and time.

2.2.2 Tracks. Traces left by animals or men on soft soil (or
their footprints impressed in hard soil) show evidence of being
the simplest and most natural means to record the stepping
locomotion. Archeologists and zoologists are interested in
studying the tracks of fossil organisms, which they compare
with photographed footprints of living species on desert sand.
This approach is instrumental in resolving a number of
evolutionary problems [61]. It is equally often applied in
biomechanical studies in which researchers make small
tetrapods leave ink traces on a paper sheet or analyze trails
of arthropod footprints on smoked glass. Due to the long-
standing interest in tetrapod paces, there is a well-developed
classification based on track records. A key to animal paces
using this technique is offered in a book by P P Gambaryan
[15].

We confine ourselves to the examination of only the
simplest regular cases (Fig. 2a, b).

A t r a c k left by one leg is a single train of footsteps, each
separated from the previous one by a distance equal to the
step length L. A bipedal track consists of two trace strings
shifted by d with respect to each other, where
ÿL=2 < d4L=2. Tracks of myriapods are characterized by
multiple paired shifts of the trace lines.

By definition, a track of bipedal footprints is described by
two independent spatial parameters fL; dg � ST. Therefore,
ST is a determining set of bipedal footprints. Synphased limbs
leave unshifted tracks (d � 0), while counterphased ones
make footprints shifted by a half-step, with d � L=2.

Similarly, the description of a quadrupedal track includes,
generally speaking, three shifts. However, one may consider
only two shifts of trace lines provided the movements of
contralateral pairs of legs are in phase with each other
(Fig. 2a, b). Then, the determining set of footprints contains
three independent parameters

ST � fL; d?; dkg : �2:6�

The lack of an ipsilateral shift (i.e. at dk � 0) results in a
`step-to-step' gait at which the hindfoot trace is superimposed
exactly on the imprint of the forefoot. In such a case, a
quadrupedal track looks like bipedal one. However, the
hindlimbs of tetrapods normally make a somewhat wider
trail rut than the forelimbs. This explains why the hindfoot
does not in fact fall precisely into the imprint of the forefoot
but touches the ground very close to it.

Tracks of reptiles on desert sand have been specially
studied by V B Sukhanov [61]. The author has demonstrated
thatmost of them have characteristics suggestive of a `step-to-
step' gait. At a low speed of locomotion, the imprints of
hindlimbs lie somewhat behind those left by the forelimbs
(when d � dk < 0). Conversely, at a high locomotion velocity,
the former are slightly ahead of the latter (when d > 0). The
`step-to-step' rule is fully realized at a certain intermediate
locomotion velocity. V B Sukhanov tabulated quantitative
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characteristics of the tracks of three reptilian species in his
book [61] (an example of the gecko is presented below, see
Section 2.6.9).

Earlier, Marey and other authors (see Ref. [37]) showed
that equine gaits such as the walk and the trot exemplify an
especially close approximation to the `step-to-step' rule:

``A trotting horse always makes a two-line track, i.e. it
places its hindfoot exactly over the imprint of the colateral
forefoot. In a short trot, the hindleg strikes the ground slightly
behind the foreleg, but if the horse uses the extended and high
trot the former is placed in front of the latter. The track of a
walking horse resembles that of a trotting one, but the strides
are shorter; in an ordinary walk, the step length equals the
height of the horse (measured from the ground to the
withers).''

Thus, a study of relative track shifts of different leg pairs
provides information about phased leg movements and
therefore about gaits which are traditionally defined in
terms of time-related phase patterns.

What else can be learnt from the analysis of tracks left by
animals on a soil? From the pathfinder's standpoint, the
following problem can be of interest:

Qu e s t i o n 2.1. Is it possible to tell locomotion velocity v
from trail characteristics?

The step length may be one of the clews, although the
relationship between this parameter and locomotion velocity,
L�v�, is far from being one-valued whenmaking an identifica-
tion of the form and regime of locomotion based on tracking
records.

Human steps integrated into walking or running are
counterphased. Therefore, it is impossible to distinguish
between these forms of locomotion based on the arrange-
ment of footprints (their shape can serve as an additional
criterion in this case). Analysis of real trains of human
footprints must take into consideration the dependence of
the step length L on the person's height H. Also, real
footprints can be used to find the height dependence of the
foot length (Lf). Then, the foot length Lf gives the height H,
using a well-known empirical relation H � 6:6Lf [67].

The velocity v can be derived from the step length L if the
dependenceL�v;H� is known (or the dependenceL�v� for that
matter, if the step length is assumed to be proportional to the
person's height). For example, for normal walking (i.e. in the
framework of the hypothesis most natural under ordinary
conditions),L�v� is amonotone function (Fig. 3b).Hence, it is
possible to find the locomotion velocity v from the step length
L (provided the above hypothesis is valid).

Let us consider now the case of human footsteps left on
railroad sleepers. Evidently, the walking velocity could vary
even if the man maintained a constant step length. Therefore,
in this case, the locomotion velocity is impossible to estimate.
A different regimemay prove more suitable for a longer walk.
Specifically, the normal walking velocity may be chosen, such
that the step length is as large as the sleeper pitch.

Sleeper walking is conceptually different from the normal
walk (NW) and corresponds to the isometric walking (IMW)
regime (see Section 2.4.2).

No t e 2.1. The author's personal experience indicates
that in sleeper walking a subject prefers (for an unclear
reason) to maintain his (or her) habitual walking velocity.
The stride length in this walking modality being shorter than
normal, the gait is adjusted to the habitual velocity by
shortening the step period T, that is by increasing the step
rate 1=T. In themid-1950s, the author, then an undergraduate
student at the Moscow Physical-Technical Institute (MFTI)
situated in the suburbs, did a good deal of sleeper walking
between the Institute and theDolgoprudnaya railway station.
At that time, he developed not only such a walking manner
but also the understanding of the underlying relationships
which were used years later to formulate the concept of
kinematic locomotion regimes [27, 28].

2.2.3 Notograms. Another old method to characterize gaits is
based on keeping records of rhythmic leg strokes. Goiffon
and Vincent were the first to use musical notation to visually
represent gait rhythms as early as 1779 (see Refs [37, 61]). The
complexity of step rhythms depends on both the gait mode
and the number of legs. When homolateral limbs of a trotting
animal move in a `step-to-step' manner, its diagonal limbs
touch the ground more or less simultaneously and only two
strikes occur at a time [37]:

``A strictly two-beat variant of the trot is called free trot,
whereas split-beat variants are referred to as interrupted trot
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in which the hindleg strikes the ground somewhat after the
diagonal foreleg.''

As a complement to the musical notation of leg beats,
Marey proposed to record support phase durations [37] using
pneumopodographic sensors built into footwear soles or
horseshoes. Podographic recording converted the musical
score method into the notogram technique (Fig. 2c) yielding
a pulse multitrain portrait of alternating stride phases. A
multiline notogram was produced by synchronous recording
of pneumograms from all the limbs. The support phases were
distinguished by episodes of elevated pressure, the pulse
amplitude being a measure of the ground supporting force.

No t og r am NN presents a set of parallel time axes of all
N legs showing alternation of the support (dark bars or notes)
and swing (blank spaces) phases.

In agreement with the number of supporting-force
recording channels, the human gait notogram N2 contains a
single pair of lines, while the equine notogram N4 shows two
pairs of them; here (see Fig. 2c), the upper pair corresponds to
the forelimbs, and the lower one to the hindlimbs.

No t e 2.2. The vertical alignment of note lines can be
selected in different ways. For example, it may correspond to
the sequence of foot contacts LH, LF, RF, RH (Fig. 2b),
when the upper and lower line pairs correspond to ipsilateral
pairs of legs (such a sequence is advocated in Sukhanov's
book [61]). This is at variance with the order preferred by E
Marey (LF, RF, LH, RH), in which the upper and lower pairs
of lines correspond to contralateral limb pairs (Fig. 2c).

For certainty, the time lags j between cycles of different
limbs are measured between the moments of leg detachment
from the ground (Fig. 2c), taking care that the inequalities
ÿT=2 < j4T=2 are satisfied. In the general case, step cycles
of two adjacent ipsilateral legs are shifted as much as phase
lag jk, and those of contralateral legs as much as j?. The
choice of the line sequence in Marey's notograms is dictated
by the fact that contralateral leg pairs (in bipeds and other
multipedal animals) exhibit fixed phase patterns, i.e. they are
either in phase (when j? � 0) or out of phase (when
j? � T=2) with each other. The dominant diversity of gaits
is ensured therewith by a gradual change of ipsilateral time lag
j � jk. Marey took advantage of gradual variability of
ipsilateral phase lags when constructing his synthetic model
of gaits (see below).

In the parametric definition of the notogram NN, the
phase durations of LC and time-related LC shifts between
adjacent leg pairs are used. For this reason, the minimal
determining set of the notogram contains four parameters

SN � fTÿ;T�;jk;j?g : �2:7�

By analogy with the previous discussion, it is appropriate
to put the following:

Qu e s t i o n 2.2. Is it possible to tell the locomotion
velocity v from a notogram?

Unlike a track, a notogram contains additional informa-
tion about the time structure of LC to which an additional
criterion is owed. Suppose that the notogram is given without
a scale time mark, which means that the actual phase and
period durations are unknown. Then the LC time structure
can be deduced from the quantity gwhich is equal to the phase
duration ratio: g � T�=Tÿ. A relative notogram allows
several individual forms of locomotion to be distinguished,
e.g. human walking and running, because the kinematic
difference between the normal walk (NW) and the normal

run (NR) is reflected in the support and swing phase duration
ratios:

NW : Tÿ > T� ) T2ÿ � Tÿ ÿ T� > 0) g < 1 ; �2:8�
NR : T� > Tÿ ) T2� � T� ÿ Tÿ > 0) g > 1 : �2:9�

Not e 2.3. These formulas (2.8), (2.9) for interval
durations (during a cycle) in a two-phase condition of leg
pairs are valid for counterphased cycles �j � T=2�. In the
case of synphased cycles �j � 0�, one finds T2ÿ � Tÿ and
T2� � T�. Functions T2ÿ�j� and T2��j� are represented by
piecewise linear trapeziform plots. For tetrapods (taking into
account the considerable interest in diagonal gaits), a double
support period T2Dÿ for a diagonal limb pair can be
introduced (see Ref. [61]). When contralateral limb pairs are
out of phase, T2Dÿ � T2ÿ�jk � j?� � T2ÿ�j� T=2�.

The absolute locomotion velocity v can be deduced from a
relative notogram provided the function g�v� is known. For
human walking and running, parameters of the cycle
structure g monotonically increase with increasing velocity
v. Therefore, the quantity g can be used not only to distinguish
between the walk and the run but also tomeasure the speed of
locomotion.

2.2.4 Target trajectories. Answers to the above selected
questions concerning the locomotion velocity are inevitably
ambiguous provided either spatial (trains of footprints) or
temporal (notograms) information is available. Conversely,
having both spatial and temporal data (i.e. a track and a
notogram), one can give unambiguous answers to these
questions even if no additional relationships are at hand.

Let us consider a variant of bipedal locomotion taking
advantage of a known track and notogram. By reducing and
modifying the general definitions (2.6), (2.7) to adjust them to
the variant in question, it is possible to represent the
determining sets of the track and the notograms, as well as
the relationship between them, in the following form

ST � fL; dg � fvT; vj?g ; SN � fT;T�;j?g : �2:10�

The spatio-temporal description can be obtained by the
union of sets (2.10):

ST \ SN � fT;L;T�;j?g � STT; 2 : �2:11�
The resultant united set STT; 2 contains four parameters for
the target trajectory (TT) pair.

P r ob l em 2.1. Let a track and a notogram of bipedal
locomotion be given in a graphical form; relevant target
trajectories need to be constructed.

Let us introduce a track-related space-time frame of
reference X � fx � �t; x� 0g, i.e. road reference system
(RRS). Furthermore, let us map the walking notogram on
the time axis. In the coordinate system X, footsteps are
represented by horizontal straight lines and interphase
boundaries in the notogram by vertical ones (Fig. 2d). If an
event o � �0; 0� 0 is coincident with the onset of swing, then the
stepping event x� � �T�;L� 0 falls on its termination. A
section of the oblique straight line which connects the events
of this pair is actually a TT fragment representing the swing
phase. On the other hand, the event o marks the cessation of
the adjacent support phase which starts from the previous
stepping event xÿ � �ÿTÿ; 0� 0; a section of horizontal
straight line connecting the events of the latter pair is a TT
fragment exhibiting the support phase.
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The piecewise linear TT portion incidental to events
X � �xÿ; x�� corresponds to a single step, i.e. one locomotor
cycle. Let us pick out these events as basic ones; in other
words, let us construct a base RRS matrix

X � �xÿ; x�� ( xÿ � �ÿTÿ; 0� 0 ; x� � �T�;L� 0 : �2:12�
The entire TT Z (an infinite piecewise linear trajectory) is

completed by the translation of a base fragment with periods
T and L along the time and space axes.

In the case of steady locomotion, all midpoints of the
support and swing phases are periodically distributed along
one `basal' straight line Xb with a shift equal to the vector
xb � �x� ÿ xÿ�=2 � �T=2;L=2� 0. In other words, the sequen-
tial basic events are counterphased.

The counterphased NN Z � of a contralateral limb results
from the translation of TT Z by a vector xb � �T=2;L=2� 0.
Thus, problem 2.1 is solved.^

2.2.5 Parametric degrees of freedom.An obvious advantage of
the TT technique consists in the possibility of studying
locomotor kinematics in different frames of reference. The
locomotor reference system (LRS) Y � fy � �t; y� 0g moves
with respect to RRS at the speed of locomotion v. In other
words, the basal straight line derived in the previous section
serves as the time axis of LRS. Systems X and Y are related by
a Galilean transformation (see Appendix for the notation)

C: Y! X ) x � Cy ( C � E� vE21 : �2:13�
The base matrix X (2.12) introduced into RRS undergoes

transformation to the base LRS matrix

Y � �yÿ; y�� � C ÿ1X

( yÿ� C ÿ1xÿ � �ÿTÿ;Lÿ� 0; y�� C ÿ1x� � �T�;Lÿ� 0:
�2:14�

In LRS (Fig. 2e), the stepping foot movements represented by
TTs Z and Z � are of a purely oscillatory nature. It follows
from Eqn (2.14) that the double amplitude of these asymmet-
ric oscillations is equal to the step length Lÿ during support.
This accounts for the different absolute swing (u) and
locomotion (v) velocities due to various phase durations.

The foregoing time-specific criteria of NW (2.8) and NR
(2.9) can be supplemented by inequalities for the locomotion
velocity, taking into consideration that u � v=g:

NW : T� < Tÿ ) u > v ; NR : T� > Tÿ ) u < v :

�2:15�

The pair of TTs fZ;Z �g totally substitutes the primary
reference pair, i.e. the notogram and the track, and combines
the kinematic information contained separately in each of
them. Therefore, quantity j? in the set (2.11) characterizes in
the general case a relative shift of twoTTs,Z andZ �, along the
basal line. The shape of either TT is unequivocally given by
the three parameters contained in the base RRS (2.12) and
LRS (2.14) matrices. It differs only in terms of the spatial
parameter:

STT RRS � fTÿ;T�;Lg ; STT LRS � fTÿ;T�;Lÿg :
�2:16�

To sum up, we have proved the validity of the following:
Ma i n t h e o r em o f s t e p s y n e r g e t i c s. A kinematic

definition of the step cycle has three parametric degrees of
freedom.

Doubtless, comparative studies of stepping locomotor
movements must take into consideration the existence of
three parametric freedoms. The fundamental aspect of this
problem consists in the identification of the basic controlling
parameters of step kinematics, that is distinguishing those
basic parameters which are used by the control system (brain)
for the solution of kinematic problems, such as the construc-
tion of stepping movements.

2.2.6 The problem of basic characteristics. The general
description of TT includes eight quantities from the follo-
wing list:

L � fT;Tÿ;T�;L;Lÿ;L�; u; vg : �2:17�

This is a linguistic set of stride kinematic parameters, which is
redundant for the basic TT definition because only three
independent parameters (2.16) are actually sufficient for the
minimal TT definition. However, the formal choice of the
three basic parameters is arbitrary. For example, if the
following base set is chosen:

B � fT;T�; vg ; �2:18�

then the remaining parameters included in the list (2.17) are
expressed via the basic ones:

Tÿ � Tÿ T� ; L � vT ; Lÿ � v�Tÿ T�� ;

L� � vT� ; u � v�Tÿ T��
T�

: �2:19�

Formally, it is permissible to assume the existence of an
universal basic triple of controlling parameters. However,
accounting for the existence of different control levels, it
appears more relevant to speak about the identification of
basic characteristics.

D e f i n i t i o n 2.1. Basic characteristics are said to be
velocity dependences of basic parameters chosen to serve as
determining functions.

A system approach to the identification of basic char-
acteristics proceeds from the comparative evaluation of the
variability of an expanded set of locomotor characteristics, i.e.
dependences of the parameters of set (2.17) on locomotion
velocity:

L�v� �
�
T�v�;Tÿ�v�;T��v�;L�v�;Lÿ�v�;L��v�; u�v�

	
:

�2:20�

Such system approach can be practically realized by means of
experimental studies of locomotor movements over a wide
range of velocities, designed to identify locomotor characteri-
stics (2.20). It will be shown below that complete `portraits' of
both temporal fT�v�;T��v�;Tÿ�v�g and spatial
fL�v�;L��v�;Lÿ�v�g step characteristics are needed to
support the rationale for the choice of base synergies.

De f i n i t i o n 2.2. The kinematic portrait of locomotion is
termed an ensemble of two plot families containing temporal
step characteristics, on the one hand, and spatial character-
istics of the step, on the other hand.

The graphical representation of locomotor characteristics
has sense not only in the context of the assessment of
analytical approximations to experimental findings but also
for the visualization of the analytical content of traditional
metaphors and models.
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A typical kinematic portrait of human NW is shown in
Fig. 3a, b. With relevant experimental data for temporal and
spatial step characteristics (borrowed in the present case from
our earlier work [27]) and the knowledge of linguistic
connections between them at our disposal, we encounter the
problem of the choice of basic characteristics for the
approximation of all kinematic portrait dependences.

2.3 Locomotor metaphors
E Marey believed that ``the meddling of mathematicians
would be premature'' [37] and formulated results of his
locomotion surveys in the form of graphic and metaphoric
rules. Despite their qualitative character, Marey's metaphors
may be successfully translated into analytical language. We
consider such a translation to be very helpful for a better
understanding of locomotion synergy models.

2.3.1 Stroboscopicmetaphor.AlthoughMarey did not directly
examine velocity dependences, he noticed a period decrease
with increasing speed. At first sight, it may seem strange that
the great experimentalist neglected a survey of functional
relationships between stride characteristics and locomotion
velocity while conducting his own research and posing a
question of the existence of biomechanical laws of stepping
movements which must be explained, according to his
opinion, in quantitative terms. Why?

There are neither mathematical formulas and calculations
nor graphic plots in Marey's book [37]. Instead, the author
presented numerous specimens of pneumorecorded podo-
grams, schematic notograms, and engravings depicting
locomotory postures of a man and horse. Also, much
attention in the book was given to the formulation of rules
for drawing sequential locomotory postures with the use of

notograms and to the methods of animation of such drawings
through the stroboscopic viewing. It can therefore be
concluded that Marey considered it unnecessary to study
velocity dependences of locomotor characteristics, being fully
confident of the validity of the following:

S t r o bo s c op i c me t a pho r. Kinematic parameters of
real stepping movements appear to depend on locomotion
velocity exactly as they do in the case of observing a given
sequence of locomotory postures with a stroboscopic device,
when only the frame rate for the individual postures can be
varied.

An analogue of the stroboscopic metaphor is the
cinematographic metaphor which easily allows a correspond-
ing kinematic model to be constructed. Suppose, there is a
certain cinematographic record of a steady human (or equine)
travel and the possibility to see the film with different frame
rates.

Qu e s t i o n 2.3. What kinematic laws govern cinemato-
graphic animation of locomotor movements?

With varied animation rate, only temporal parameters are
likely to change, whereas the spatial dimensions of the
locomotor apparatus (including the stride length) remain
unaltered. In steady locomotion, the step length is equal to
the distance L � vT covered by a subject during the period.
Hence, from the condition of constant animation step length
it follows that the period is inversely proportional to the
velocity:

L � const ) T � L

v
: �2:21�

The walking regime with a varied speed and fixed step
length is called an isometric walk (IMW). Step length
constancy serves as a kinematic synergy (`invariant') of the
walk with different speeds. The inversely proportional
dependence of the walking period on the velocity ensues
from a step length invariance.

An additional consequence of the stroboscopic metaphor
is a constant support length and a constant swing length (Lÿ
and L� � Lÿ Lÿ, respectively). Hence, it can be concluded
by analogy with Eqn (2.21) that the durations of the support
and swing phases (similar to the period duration) must vary
inversely proportional to the locomotion velocity:

Lÿ � const ) Tÿ � Lÿ
v
; �2:22�

L� � const ) T� � L�
v
: �2:23�

To summarize, Marey's stroboscopic (cinematographic)
metaphor corresponds to the isometric locomotion regime,
the kinematic portrait of which is described by formulas
(2.21) ± (2.23). It is easy to see from a comparison with a
similar NW portrait (Fig. 3a, b) that real normal locomotion
is not consistent with Marey's metaphor.

We shall see later that the real isometric locomotion is
inconsistent with Marey's metaphor as well.

2.3.3 Anthropomorphic metaphor. When pursuing his res-
earch, Marey viewed locomotor movements of legs as
periodic oscillations and therefore reduced the definition of
the gait to that of phase shifts of such oscillations. Marey's
studies were considerably simplified by the following (see
Ref. [37]):

An t h r opomorph i c me t a pho r. The locomotion of
fore- and hindlimb pairs in horses may be compared with a
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simultaneous walk of two people following each other in the
manner of circus clowns mocking `a horse' or two subjects
carrying `a log of wood'.

The main corollaries to this metaphor were formulated by
Marey as

Ga i t s yn t h e s i s r u l e s:
(1) the kinematic characteristics of fore- and hindlimb

steps are identical;
(2) the phasings of contralateral limb pairs are identical

and constant;
(3) the ipsilateral limb phasingmay change independently.
In this context, phasing is taken to mean a phase ratio

c � j=T expressed in fractions of the period. For example,
the counterphase ratio has the form c? � j?=T � 1=2.

Proceeding from the gait synthesis rules,Marey illustrated
the diversity of equine gaits with the help of the following
`synthetic model': counterphase (or synphase) notograms of
fore- and hindlimbs were depicted on two parallel strips of
wood. The strips were then shifted in parallel to obtain an
integrated notogram of a concrete gait. Using this method,
Marey demonstrated that equine gaits may be reproduced by
pushing in parallel paired notograms of fore- and hindlimbs.

In accordance with the synthetic model, the determining
conditions of a gait are represented by the phasing constancy
conditions which are actually invariants of the stroboscopic
metaphor. Taking into account Corollaries (2.21) ± (2.23) of
this metaphor either, it is possible to identify the determining
conditions of Marey's kinematic model:

DC � fL � const; Lÿ � const; ck � const; c? � constg :
�2:24�

The paramount role of the gait synthesis rule (1) is apparent
only when one takes into consideration forms of locomotion
differing in the structure of locomotor cycles (2.8) and (2.9).
Contralateral phasings also give rise only to bimodal
diversity, when c? � 0 or c? � 1=2. In fact, gait diversity is
first and foremost due to the gradual variation of ipsilateral
phasings, c � ck 2 �ÿ1=2; 1=2�.

No t e 2.4. The gait synthesis rule (1) permits the choice of
one of the two locomotion varieties: either walking, with
Tÿ > T�, or running, when Tÿ < T�. A synthetic model for
tetrapods can be constructed as two staves of four identical
lines each, one for the walk, the other for the run. Rule (2)
allows the formation, for each staff, of paired notograms of
fore- and hindlimbs of one of the two types, counterphased or
synphased. The notograms of the pairs of fore- and hindlimbs
of the same type being obtained, the synthesis of a concrete
gait is completed by applying rule (3), that is by a shift of the
paired notograms as large as an arbitrary duration of the
ipsilateral phase j 2 �ÿT=2;T=2�. An example of this
approach to the construction of notograms of quadrupedal
locomotion for two conjugate forms of the cycle structure is
illustrated in Fig. 2.

The synthetic gait model admits of a continuous change of
ipsilateral phase j 2 �ÿT=2;T=2�. Initially, Marey did not
mention the advisability of discrete gait ranking in terms of
additional intervals of ipsilateral phase variation. Discrete
ranking of ipsilateral gait variants emerged from the
combination of notogram and support pattern techniques.
The synthetic gait model was first updated by Goubaux and
Barrier [19], Marey's disciples. The final version of the
combined application of notograms and support patterns
was proposed by V B Sukhanov [61].

2.3.4 Support metaphor. The sequential support pattern
method for the characterization of quadrupedal gaits was
first introduced in the late 19th century by Muybridge who
pioneered the use of instantaneous photography in biomec-
hanical studies. Both the simplicity and possibility of visual
demonstration earned the method widespread popularity
among researchers engaged in comparative evolutionary
studies of motor end organs in tetrapods (see Refs [15, 61,
86]). Support sequences represent one more metaphor of
discrete gait classification which is different from the
sequential beat metaphor (see above) in that it takes into
consideration two phases of the locomotor cycle (LC). The
power of a set of support sequences and the number of gaits
they identify depend on the number of legs N.

N � 1. Let us introduce a binary representation of the
leg's phase states: 1 for the support, and 0 for the swing. A set
of phase states in unipedal locomotion is S1 � f�0�; �1�g. The
alternation of phase states can be described by a graph G1

with two vertices and edges depicting transitions from one
state of set S1 to the other (Fig. 4a, N � 1).

N � 2. Figure 4a also shows notograms of bipedal
locomotion for four phase state values c � 0, 1=8, 1=4, 3=8.
The digits 0, 1, and 2 under the notograms stand for the
number of support limbs during the time interval shown by
vertical bars. At c � 0, both legs are first in contact with the
substrate (support phase) as indicated by the number 2.
Thereafter, they convert to the swing phase (0). Thus, this
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notogram of synphased cycles describes the gait G2�0� � 2j0.
The same line of reasoning leads to the inference that other
notograms (Fig. 4a) are in correspondence with the following
support formulas

G2

�
1

8

�
� 1j2j1j0 ; G2

�
1

4

�
� 1j2j1 ; G2

�
3

8

�
� 2j1j2j1 :
�2:25�

The two-place representation is especially convenient for
distinguishing phase states of different limbs. For example,
notation (1, 0) indicates that the first leg is in the support
phase, while the second is in the swing, etc. A complete set of
phase states is S2 � f�0; 0�; �1; 0�; �0; 1�; �1; 1�g. The transi-
tion graph G2 can be represented as a square with vertices
having coordinates of theS2-set states (Fig. 4a,N � 2). In this
case, the gait is designated a closed path P2�c� in graph G2.
For instance (see Fig. 4a), the path P2�1=8� traverses all the
four vertices, while the path P2�1=4� traverses only three of
them.

If a phasing c belongs to an open interval of values
�0; 1=4�, i.e. 0 < c < 1=4, then all the paths P2�c� are
isomorphic. In other words, there is a continuous interval of
phasing values c 2 �0; 1=4� within which one and the same
gait represented by a sequence of four phase states is realized.
The equivalent gait interval in the notogram c � 1=8 is
shaded (Fig. 4a). Apart from `interval gaits', there are `point
gaits' corresponding to a single phasing, e.g. P2�0�, P2�1=4�,
etc. The path length jP2�c�j � 4 is a discrete sign of interval
gaits, whereas jP2�c�j < 4 is inherent in point gaits. Support
formulas (2.25) possess analogous properties and thus they
are of the order of jG2�c�j � 4 for interval gaits, and
jG2�c�j < 4 for point gaits.

When N � 2, it is easy to sort out all the variants of
different gaits, using either paired notograms or paths in the
graph G2. A more economic method of scrutinizing all the
variants of bipedal gaits is based on the use of 2-dimensional
notograms (Fig. 4b).

For this purpose, a rectangular coordinate system with
two time axes �t1; t2� needs to be introduced. A notogram of
the first limb is given along one axis, while that of the second
limb parallels the other one. The straight lines show the phase
boundaries of LC and divide the plane into the phase state
zones of bipedal locomotion. This procedure results in the
division of the LC rectangle, inside which t1; t2 2 �0;T�, into
four zones. Elements of the set S2 are used to mark the zones
of the diagram thus obtained. The straight line with a unit
slope L�c� intersects the ordinate at the phase shift point c of
the second leg. In this diagram, the gait P2�c� is designated
the list of zones traversed by the straight line L�c�. The
oblique dashed line in Fig. 4b is the straight line L�1=8�. The
dotted lines denote `point gaits' and borders of `interval gaits',
respectively; they are drawn through the vertices of phase
state zones.

N � 4. The total list of support sequences inherent in
tetrapod locomotion is very large and will not be detailed
here. The interested reader is referred to the comprehensive
coverage in the lists and diagrams elaborated by P PGambar-
yan and V B Sukhanov in their respective books (see Refs [15]
and [61]). Suffice it to note the most common formal features
of support gaits in tetrapods.

The complete set of four-place phase states

S4 �
��0; 0; 0; 0�; �1; 0; 0; 0�; . . . ; �1; 1; 1; 1�	

contains 24 � 16 elements which can be represented as
vertices of a 4-dimensional cube. Then, the gaits are defined
at these vertices by the transition graph G4. Such a
multidimensional metaphor facilitates the understanding of
a large stock of support gait variants represented either by the
support formulas G4�c� or by the closed paths P4�c�. For
tetrapods, the discrete traits of interval gaits are given by
equalities��G4�c�

�� � ��P4�c�
�� � 8 ;

while the inequality

jG4�c�j � jP4�c�j < 8

holds for point gaits.
A two-dimensional diagram of all support gaits inherent

in tetrapods is constructed in the following way. The paired
notogram of the forelimbs is placed on the horizontal axis and
that of the hindlimbs on the vertical. Figure 4c is constructed
to illustrate counterphased steps of each pair and the case
when the support duration Tÿ is greater than the swing
duration T� (here, Tÿ=T� � 3). The straight lines showing
LC phase boundaries also divide the plane into phase state
zones. Because paired notograms are divided into four
segments each, the LC rectangle contains 16 zones. For the
sake of clarity, the zones of the diagram thus obtained are
marked proceeding from the traditional support patterns
instead of using elements of the set S4. Then, in each quartet
of points, the solid circles denote the supporting limbs, while
the open ones stand for the swinging limbs. The solid oblique
line in Fig. 4c is the straight line L�1=8� to which the interval
gait P4�1=8� and the support formula

G4

�
1

8

�
� 4j3j2j3j4j3j2j3 �2:26�

correspond. Based on this diagram, all other gaits are easy to
describe. All told, it is valid for four interval and four point
gaits.

To complete the picture, we will point out inverted
diagrams of support gaits, constructed from inverted noto-
grams, for instance, the inverted variant of the support
formula (2.26):

G �4

�
1

8

�
� 0j1j2j1j0j1j2j1 : �2:27�

Not e 2.5. If synphased notograms of fore- and hindlimbs
are considered (to model gallops) instead of counterphased
ones, the diagram of quadrupedal support gaits (Fig. 4c)
takes the structure of the bipedal diagram shown in Fig. 4b.

N > 4. The above formal methods of gait construction are
easy to extend to the general case of an arbitrarily large leg
number, however we are led to sacrifice therewith graphic
methods and to use nothing but algebraic means. Support
gaits at N > 4 may be of greatest practical interest for six-
legged stepping apparatus (see, for instance, Ref. [86]). For
multipedal organisms including hexapods, the support
metaphor is of little value because ipsilateral coordination in
arthropods better satisfies another metaphor, namely, the
wave metaphor.

2.3.5 Wave metaphor. It follows from a quotation cited in the
beginning of this section that even at the time Aristotle knew
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that the `diagonal' gait is widely used by multipedal walkers
having N > 4. As this takes place, hexapods form the so-
called:

A l t e r n a t i n g t r i p od. In these animals, the first and
last limbs on one side of the body step synchronously with the
mid-limb (i.e. diagonal leg) on the other side.

Arguments in favor of the static stability of tripod support
have long been used to account for the selection of diagonal
coordination between limbs throughout the course of evolu-
tion. Considered sufficient, this coordination modality was
believed to be the only one feasible in the animal kingdom.
G Hughes [80] was the first to cast doubt upon the universal
nature of the `tripod metaphor' as applied to hexapodal gaits.
In a study designed to carefully examine a variety of gaits in
cockroaches after selective amputation of legs, Hughes made
a pioneering discovery of metachronal (i.e. happened in
waves) swing of ipsilateral legs.

The popularity of Hughes' wave metaphor was further
promoted by the cybernetic interpretation of neurophysiolo-
gical mechanisms of locomotor coordination proposed by
D Wilson [91]. The polyanthropomorphic metaphor of
Marey was thus replaced by the concept of coupled neuronal
`locomotor generators' which Wilson compared with gen-
erators of electrical oscillations for radioengineering.

In order to better illustrate the applicability of the wave
metaphor, D Wilson also developed a notogram-based
version of the `symbolic gait model'. However, symbolic
notogram images will not be used in the forthcoming
discussion because the kinematic rules formulated by Wil-
son, somewhat differing from the analogous rules (2.24)
proposed by Marey, appear to be more relevant to the
purpose.

W i l s on ' s k i n ema t i c r u l e s:
(1) the period T is inversely proportional to locomotion

velocity v;
(2) the swing phase duration is constant: T� � const;
(3) the lag-period between consecutive ipsilateral LCs is

constant: jk � const;
(4) contralateral LCs are counterphased: c? � const �

1=2.
It is worthwhile to note that rule (1) has much in common

with Marey's stroboscopic metaphor, whereas rule (2) is at
variance with it. Therefore, rule (1) contradicts rule (2)
because it implies a decrease of the period to an infinitely
small value with increasing velocity of locomotion, which is
impossible since T � Tÿ � T� > T� � const. On the other
hand, it appears fromWilson's notogram illustrations that, at
a fixed swing phase duration, the period is shortened because
the support phase duration decreases. It seems very likely
that, when proposing rule (1),Wilson had inmind the support
duration Tÿ rather than the entire T period. Hence, the first
rule reads as

(1�) the support duration Tÿ is inversely proportional to
locomotion velocity v.

The most important consequence of the modified rule (1�)
is a constancy of the support step length, Lÿ � const, i.e. the
double amplitude of a leg swinging. Therefore, the determin-
ing conditions (DC) of Wilson's kinematic model can be
written in the following form:

DC �
�
T� � const ; Lÿ � const ; jk � const ; c? �

1

2

�
:

�2:28�

The kinematic portrait of this model can be obtained
distinguishing formulas of temporal and spatial character-
istics:

T � T� � Lÿ
v
; Tÿ � Lÿ

v
; T� � const ; �2:29a�

L � Lÿ � vT� ; Lÿ � const ; L� � vT� : �2:29b�

An additional consequence of DC (2.28) is a constancy of
the leg swing speed

u � Lÿ
T�
� const : �2:30�

Moreover, rule (3) which postulates a constant delay between
consecutive ipsilateral LCs can be reformulated in terms of
wavy locomotion making use of the notion of metachronal
wave (MW) velocity

w � d

j
; �2:31�

where d is the distance between adjacent support intervals
(Fig. 7a, b), while the metachronal delay isj � jk. Bearing in
mind that the distance d is constant, Wilson's model may be
characterized by the condition of constant MW velocity:

w � const : �2:32�

The condition of constant ipsilateral time lag is satisfied by
the constant MW velocity which is independent of the speed
of locomotion.

2.3.6 Wheel metaphor. Let us bring Marey's gait model into
correspondence with the wave metaphor. A simple mechani-
cal construction may be used for the purpose as proposed
elsewhere [30] for the illustration of the kinematic invariant
technique.

Let us consider a `multiwheel cart' with many parallel
axles to which pairs of `contralateral' sectorial wheels are
firmly attached. The wheels are not usual disks but made in
the form of solid sectors of angle aÿ < 2p with blank spaces
(Fig. 4d). For steady movement of the cart, all the wheels
rotate without slip, with constant and equal angular velo-
cities. The rolling of a solid disk sector over the road surface
from one radius to the other corresponds to the support
phase, and that of a blank to the swing phase. By analogywith
the human gait, the rolling of the solid sector may be
considered to imitate the rolling of the foot from heel to toe.
If r is the radius of the circle, the `step' length of the wheel as
well as support and swing `step' lengths can be found in the
following way:

L � 2pr ; Lÿ � aÿr ; L� � a�r ( aÿ � a� � 2p :

Thus, all the spatial characteristics of the step length are
fixed constructively and are independent of the locomotion
velocity v. This accounts for the inverse relationship between
all temporal characteristics (period, support and swing phase
durations) and locomotion velocity. In other words, the cart's
kinematics are consistent with the stroboscopic metaphor,
and

u � Lÿ
T�
� v

g
( g � a�

aÿ
� T�

Tÿ
� L�

Lÿ
; �2:33�
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the swing velocity is proportional to the speed of locomotion
because the cycle structure parameter g is unchanged in the
model under consideration.

The relative phasings of `step' cycles depend on the initial
angular position of the sectors. If, for instance, the contral-
ateral wheel sectors have been set out of phase with one
another, the midpoint of the arc enclosing solid sector of one
wheel coincides with the bisectrix of the blank angle in the
contralateral wheel. Uniform phasing of ipsilateral wheels is
given by the angle b having the same sign as that of
metachrony. The phase delay between adjacent ipsilateral
cycles, j � br=v, is inversely proportional to the velocity of
locomotion, while the relative phasing c � j=T �
br=L � const is the same regardless of locomotion velocity,
just because the condition L � const is fulfilled. It is known,
however, that the condition c � const determines the gait (in
agreement with Marey's model). Therefore, there is a simple
relation between Marey's definition of the gait and the wave
approach taking advantage of the dependence w�v� � d=j:

c � const ) w � kv : �2:34�
In other words, there is a correspondence between the
condition of constancy of ipsilateral phasing and the linear
MW velocity dependence on locomotion velocity, where
k � d=�cL� � d=�br� is the constant coefficient, and d is the
constant distance between adjacent axles.

To conclude, the model of the cart with sectorial wheels is
kinematically adequate to the locomotor model proposed by
Marey, and both functions, u�v� and w�v�, are directly
proportional to the velocity of locomotion.

2.4 Cycle synergy
In order to justify the resultant canonical model of stepping
movement synergies, we shall have to investigate variability
of different interparametric relations with special reference to
different regimes of locomotion.

2.4.1 Levels of kinematic control. To begin with, one needs to
distinguish between three levels of kinematic control.

The choice of locomotion modality (walking, running,
jumping, etc.) should be regarded as the top level of strategic
control because, on the one hand, it implies radical coordina-
tion restructuring of stepping movements and, on the other
hand, each form of locomotion may have different intrinsic
regimes, such as normal, isorhythmic or isometric.

Coordinated organization of parametric freedoms,
related to the choice of a locomotion regime, constitutes an
intermediate level of tactical stride cycle control.

Tuning in to the chosen form and regime of locomotion is
ensured with the aid of relevant synergies in such a way (see
below) that, in the end, only one freedom of operating control
is retained. Each regime can be realized at different locomo-
tion velocities; therefore, the choice of velocity in the frame-
work of a given regime constitutes the lower level of operating
control.

2.4.2 Kinematic portraits. Let us first consider a priori
kinematic variants of changing the steady walking speed. A
subject walking with a constant speed v has a variety of means
to control his or her movement, which ensue from the
definition of velocity as the step lengthL to the periodT ratio:

v � L

T
: �2:35�

Different variants of control are due to the possibility of
separately varying either the step length or the period, or
simultaneously changing the two parameters. Let a new step
period and length be chosen in accordance with the following
rules:

(1) T � const, L � var Ð isorhythmic walk (IRW);
(2) T � var, L � const Ð isometric walk (IMW);
(3) L=T � const Ð isovelocity walk (IVW);

in the latter case, the step length and period vary in
proportion.

Each of these cases corresponds to a specific walking
regime. In the case of normal walk (NW), the principle of
direct proportionality necessary to maintain the desired
locomotion velocity is replaced by:

Th e i n v e r s e p r opo r t i o n a l i t y p r i n c i p l e. It
implies that the period decreases with increasing step length,
while an increase of the period results in a shorter step.

The normal human walk is known to be organized
subconsciously, i.e. in the form of locomotor automation. We
do not usually think of howwe are walking, nor are we able to
intelligibly describe our movements in response to a sudden
question.

De f i n i t i o n 2.3. Normal locomotion (walking, running,
etc.) is designated the natural realization of locomotor
displacements unaffected by additional external factors,
influences, and limitations.

Althoughmany kinematic laws of NW slip from the grasp
of mind, they do operate. It is easy to see by examining a
kinematic portrait containing velocity dependences of major
kinematic parameters (Fig. 3a, b): three temporal fT;Tÿ;T�g
and three spatial fL;Lÿ;L�g ones.

The approximating functions of dependences T�v� and
L�v� in the regime

NW : T � Tc � Lc

v
; L � Lc � Tcv �2:36�

are in agreement with the inverse proportionality principle
(for the example illustrated by Fig. 3a, b, values of Tc and Lc

constants are given below in Table 1). For the properties of
the remaining functionsT��v� andL��v�, see the next section.

Under experimental conditions, a subject having to
maintain a given stride length and thus realize the regime

IMW : L � const � Lfix ) T � Lfix

v
�2:37�

is aided by the use of a `zebra' walkway, i.e. a walkway
marked by a series of parallel white stripes stuck to the floor at
a half-step distance Lfix=2 from one another. The subject is
asked to step on the stripes at different steady walking
velocities in order to reproduce a wide range of locomotion
speeds. The conceptual methodological difference between
IMW and NW consists in the possibility and necessity of
performing a series of gaits at different fixed step lengths. The
kinematic portrait of one IMWseries is presented in Fig. 3c, d.
As expected, the plots of T�v� and L�v� satisfy the definition
(2.37).

In experimental studies, a fixed rhythm of the regime

IRW : T � const � Tfix ) L � Tfixv �2:38�

is conveniently set using ametronome ticking with a period of
Tfix=2. A subject walking with larger and lower velocities
dictated by the metronome produces a series of IRW
realizations for one Tfix value. Similar to the IMW regime,
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repeat IRW series can be obtained for different fixed step
periods. Figure 3e, f demonstrates the kinematic portrait of
an IRW series. Here, plots of T�v� and L�v� satisfy definition
(2.38).

2.4.3 Kinematic realizability areas. A comparative review of
different experimental series of IMW, IRW, and NW is
appropriate in the space-time format, either in RRS or LRS
(Fig. 2d, e), because the real control of locomotion is executed
exactly in this form. Despite the utility of parallel presenta-
tion of experimental data obtained in the two frames of
reference, we confine ourselves to LRS, it being the
kinematic analogue of the intrinsic frame of reference in
which the brain exerts proper locomotion control. Forma-
tion of cycle synergy is an important function of spatio-
temporal control of locomotion.

De f i n i t i o n 2.4. Cycle synergy (CS) denotes a func-
tional relationship between step length L and period T.

Figure 5a simultaneously depicts CSs of three regimes,
IRW, IMW, and NW, obtained in experiments involving one
and the same subject. In accordance with the definitions
(2.37), (2.38), the IRW and IMW regimes are presented here

by families of vertical and horizontal straight lines, while the
NW regime (2.36), as a unique one, is represented by a single
hyperbola

NW : L � LcT

Tÿ Tc
: �2:39�

It can be seen that the experimental points y � �T;L� 0 of
all the regimes collectively cover a finite areaYw referred to as
the potential walking area:

Yw �
�
y j ymin < y < ymax

	
: �2:40�

The rectangular boundaries of this area are formally given
by the `extreme' boundary points ymin � �Tmin;Lmin� 0 and
ymax � �Tmax;Lmax� 0. However, the real walking area
Yw � Yw is not rectangular and is limited by oblique straight
lines corresponding to the extreme (maximum andminimum)
locomotion velocities; the vmin boundary is especially promi-
nent.

No t e 2.6. It is well known that locomotor-type move-
ments (walking, running, etc.) may be performed on the spot,
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Figure 5.Different variants of cycle synergy changes: (a) three humanwalking regimes, NWÐnormal walk, IRWÐisorhythmic walk, IMWÐisometric

walk (all series were obtained in experiments involving one and the same subject); (b) NR Ð normal running, NFW and NBW Ð normal forward and

backward walking, respectively; (c) consecutive deformations of basal hyperbola following displacements of its centre; (d) reconstruction of basal

hyperbolaH by rotation of the support straight line L about center yc � �Tc;Lc� 0; (e) two pace varieties of the same horse (based on our cinematographic

records); (f) normalized cycle synergies of man (1), horse (2), dog (3), cockroach (4), myriapods Scolopendra (5) and Julus (6).
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that is with a zero step length and therefore at zero
locomotion velocity, even though the pace rhythm can be
varied as well as the lift of the legs and the height of the jumps.
Perhaps, the possibility of such variation has given rise to a
view that locomotion can be realized at an arbitrarily low
speed. Our own attempts to walk with a minimal speed,
starting from stepping on the spot, have led to the discovery
of the low speed paradoxwhich suggests that it is impossible to
walk (or run) at a speed of v < vmin � 0:2 m sÿ1.

It should be emphasized that inner points of area Yw non-
incidental to the NW hyperbola can exist, if at all, only in
special IRW and IMW regimes. In other words, when the
boundaries of this area are determined from the extreme
points on the NW hyperbola, a smaller subarea of Yw is
distinguishable.

2.4.4 Characteristic velocity. Time and length constants (Tc

andLc, respectively) in formulas (2.36) give the coordinates of
the center yc � �Tc;Lc� 0 of hyperbola H � H�yc�, which
approximates experimental NW points. Due to this, quanti-
tative evaluation of the constants

Tc � 0:575 s ; Lc � 0:79 m �2:41�

yields extremely low minimal values for the step period and
length at a normal walking. It follows from the combined
graphical representation of CSs for different locomotion
modes (Fig. 5a) that walking with a step length L < Lc is
realizable only in special IRW and IMW regimes.

From the values presented by estimates (2.41), it is
possible to derive a velocity constant

vc � Lc

Tc
� 1:37 m sÿ1 � 82 mminÿ1 ; �2:42�

i.e. characteristic velocity of NW. This latter value is
interesting in that it is close to Ralston's estimate [86, p. 84]
of the `optimal velocity' vopt � 80 m minÿ1, which is in
agreement with the minimal expenditures of energy for
normal walking in humans.

A kinematic criterion for expenditure of energy per step is
the product of the period and the step length, P � TL.
Rewriting parametric functions (2.36) as functions of velo-
city:

T

Tc
� vc
v
� 1 ;

L

Lc
� v

vc
� 1 ; �2:43�

results in the following explicit definition of the velocity
dependence of product P:

P � TcLc

�
2� v

vc
� vc
v

�
; �2:44�

while the condition dP=dv � 0 suggests the minimal P�v�
value at a velocity v � vc.

Summarizing the heuristic relationship thus found
between kinematics and the expenditure of energy leads to
the following:

Heu r i s t i c 2.1. In a normal walk, the kinematic
minimum of function P�v� � TL coincides with the energy
minimum; therefore, the characteristic velocity corresponds
to the optimal walking speed.

The substitution of v � vc into formulas (2.43) yields the
`energetically optimal' step period and length:

Topt � 2Tc � 1:15 s ; Lopt � 2Lc � 1:58 m ; �2:45�
preferred in a prolonged walking.

2.4.5 Transformation of cycle synergy.The versatile role of CS
is apparent when NW is compared with other forms and
regimes of stepping locomotion. Such a comparison is
especially valuable when one and the same subject is tested
under identical experimental conditions, because the results
give an idea of exactly those properties of functional CS
mobility, which arise at the tactical and strategic levels of
locomotor movement control (see above). The formal criteria
for the characterization of different control levels can be
formulated based on the transformation properties of
different synergies. This poses the problem of their identifi-
cation.

Our experiments described inRef. [27] had the objective of
comparing largely three walking regimes (NW, IRW, and
IMW). The subjects included in the study were examined
under the natural conditions of forward walking (NFW). But
one of them had to perform the additional series of locomotor
movements, that is a normal backward walking (NBW) and
normal running (NR). Simultaneous representation of cycle
synergies for NW, NBW, and NR (Fig. 5b) illustrates two
variants of their restructuring.

The NW to NBW conversion can be regarded as a
homothety with respect to the origin of coordinates, because
these regimes have practically identical characteristic velo-
cities (Table 1). The NW to NR conversion may be estimated
as an isorhythmic one, with the Tc reduction being negligibly
small (1.06-fold) and Lc undergoing a 1.5-fold decrease;
simultaneously, the range of NR velocities is shifted towards
higher values, and practically all running episodes have
v > �vc�NR.

Heu r i s t i c 2.2. The alteration of locomotion forms and
regimes is underlain with functional CS transformations
which formally occur by the displacement of the H�yc�-
hyperbola center yc � �Tc;Lc� 0.

From the formal standpoint, this heuristic looks trivial
because the analytical CS description contains only two
parameters which are, generally speaking, free and make up
the coordinates of the hyperbola center. Hence, there are no
other means of functional CS transformation but the shift of
the center. In all likelihood, the nontrivial content of the latter
heuristic consists in that it implies real requirements of
functional CS transformation rather than its formal feasi-
bility and the fulfillment of these requirements in the frame-
work of the same possibilities. An unexpected consequence of
heuristic 2.2 lies in the possibility of a similar functional
interpretation of IRW and IMW regimes.

2.4.6 The unified model of locomotion regimes. Until now, the
NW regime, on the one hand, and the IRW and IMW

Table 1.Normal cycle synergies in man.

Locomotion Tc, s Lc, m Vc, m sÿ1 Uc, m sÿ1{

NFW
NBW
NR

0.57
0.51
0.54

0.79
0.70
0.54

1.41
1.38
1.20

1.91
2.04
1.04

{Here, Uc is the leg swing velocity at a locomotion speed Vc.
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regimes, on the other hand, have been understood as
conceptually different. Such an understanding is largely
based on the fact that NW is a natural and unique regime,
while IRW and IMW are artificial and polymodal ones (to
put it differently, they allow for the choice of different fixed
values of the step length and period). Moreover, analytical
definitions of these regimes, viz. formulas (2.36) ± (2.38), are
also different. However, in-depth comparison of these
formulas reveals an inner (parametric) relation between
them, formulated in the following:

L emma 2.1. Linear cycle synergies of the IRW and IMW
regimes can be interpreted as limiting cases of a hyperbolic
synergy of the NW cycle.

P r oo f. Let us consider a family of isorhythmic transfor-
mations: Tc � const, Lc � var. Then, with decreasing Lc

(Fig. 5c), the hyperbola H�yc� undergoes deformation such
that in theLc ! 0 limit it degenerates into the vertical straight
line of the IRW cycle synergy. Direct substitution of
Tc � Tfix, Lc � 0 values into formulas (2.36) transforms
these general parametric formulas of NW to parametric
IRW formulas (2.38).

Similar isometric transformations give rise to another
family of deformed hyperbolas whose limiting case at
Tc � 0, Lc � Lfix is a horizontal straight line of the IMW
cycle synergy (Fig. 5c). Direct substitution of the limiting
coordinates of the center, Tc � 0, Lc � Lfix, into formulas
(2.36) yields the IMW formulas (2.37).

Thus, continuous parametric transformations
NW! IRW and NW! IMW are theoretically feasible and
correspond to vanishing of one of the center coordinates. ^

Despite the elementary mathematical content of this
lemma, it gives reason, taking into account Heuristic 2.2, to
regard isorhythmic and isometric regimes as boundary states
of the general cycle synergy control programme rather than
specific autonomous programmes ensuring kinematic condi-
tions of stride length and period fixation.

Let us rule out parametrization with respect to velocity in
the CS definition (2.43):�

T

Tc
ÿ 1

��
L

Lc
ÿ 1

�
� 1 ) TL � TcL� LcT ; �2:46�

and distinguish the canonical equation having the linear-
fractional form

Tc

T
� Lc

L
� 1 : �2:47�

Let us now focus attention on the dual `linear-hyperbolic'
content of this canonical equation:

(1) there is a `support' straight line in coordinates Tc, Lc:

L�yT; yL� : y � �1ÿ l�yT � lyL �
ÿ�1ÿ l�T; lL� 0; �2:48�

given in segments yT � �T; 0� 0 and yL � �0;L� 0 cut by this
straight line on the coordinate axes;

(2) there is hyperbola H�yc� in coordinates T, L.
The assessment of optimal values in Eqn (2.45) reveals an

important property of the CS hyperbola:

2yc 2 H�yc� , o 2 H�yc� : �2:49�

In other words, the point with double coordinates of the
hyperbola center lies on the hyperbola. It is easy to see that the
condition 2yc 2 H ensues from the condition o 2 H, and vice
versa.

That the hyperbola (2.47) passes through the origin of
coordinates is not immediately evident because only one of its
branches participates in the description of CS, namely, the
one which does not cross the origin. However, a complete
description of the hyperbola includes two centrally symmetric
branches. In the general case, an arbitrary hyperbola, as a 3-
parametric second-order curve, does not necessarily pass
through the origin of coordinates. Therefore, an additional
condition (2.49) distinguishes a special class of `basal'
hyperbolas.

De f i n i t i o n 2.5. A hyperbola is called basal if one of its
branches passes through the origin of coordinates.

L emma 2.2. Basal hyperbola H�yc� emerges from the
rotation of a support straight line L�yT; yL� about the point
yc 2 L�yT; yL�.

The p r oo f obviously ensues from Fig. 5d. The support
straight line (2.48) is the principal diagonal of the coordinate
rectangle P � fo; yT; yL; hcg in which the sum vector

hc � �T;L� 0 � Te1 � Le2 � yT � yL

makes up the radial diagonal. If yc is the center of rotation of
the support straight line (2.48), the assumption of y � yc in
Eqn (2.48) gives the equation

xc � diag �1ÿ l; l�hc ) hc�l� �
�

Tc

1ÿ l
;
Lc

l

�0
; �2:50�

i.e. l-parametric equations of cycle characteristics T�l� and
L�l�. The exclusion of the parameter l from these equations
gives the scalar equation (2.47), while the replacement of
linear l-parametrization of the support straight line by
nonlinear v-parametrization with respect to velocity,
v � L=T, l � 1=�1� v=vc�, results in parametric equations
(2.36):

hc�v� �
�
Tc � Lc

v
; Lc � Tcv

�0
:

Therefore, during rotation of the principal diagonal of the
coordinate rectangle, the basal hyperbola is traced out by the
radial diagonal vector. ^

Coro l l a r y 2.1.

�1� yc � yT ) H�yc� � L�yT; yT � yL� ;
�2� yc � yL ) H�yc� � L�yL; yT � yL� :

In particular cases, e.g. when the center of rotation lies on
one of the coordinate axes, the basal hyperbola degenerates
into the corresponding straight line, i.e. CS of NW turns into:
(1) CS of IRW; (2) CS of IMW (yielding `rotational' versions
of Lemma 2.1).

2.4.7 Cycle synergies of animals and man. The ability of
humans to use different walking regimes (NW, IMW, and
IRW) is an important fact which indicates that walking
kinematics not only has intrinsic parametric freedoms but
that the system of walk control displays a certain locomotor
intellect. The latter does not only contribute to the subcons-
cious realization of the NW regime formed in early ontogeny
(see Refs [3, 4]) but also controls IRW and IMW regimes
which are volitional actions requiring preliminary training. In
this sense, animals are not so `clever', despite having the same
kinematic freedoms. Therefore, they are incapable of reali-
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zing special locomotor regimes and always tend to keep the
regime of normal locomotion.

Assuming that stepping kinematics in man and animals is
similarly organized by their controlling systems, then all
walkers should be expected to display a certain degree of
mathematical similitude, in the first place that of cycle
synergies (CS). The CS of human NW and NR having the
form of basal hyperbola (2.47) (see Table 1), the applicability
of such an approximation needs to be checked up as regards
experimental data obtained for different animal species.

Our electronic database contains quantitative character-
istics of locomotor movements of man and a variety of
different animals. Some of the data obtained in our experi-
mental studies were published elsewhere (see Refs [3, 4, 6, 27,
28, 49, 51] for human locomotor kinematics, [5] for the same
in dogs, [26, 30] in the centipede Scolopendra, and [29, 56] in
the millipede Julus). Capacious materials obtained by
cinematographic recording of locomotor movements in
cockroaches, crabs, tortoises, lizards, horses, and other
animals remain unpublished. Data concerning equine paces
appear to be of special interest in the present context because
they were collected using only one horse handled by the same
rider who directed him either at a trot or a gallop at different
velocities. Differential approximation of experimental data
on these two main paces (Fig. 5e) reveals that, in horses, the
transition from one pace to the other is induced or accom-
panied by CS transformations. Compared with analogous
`normal' CS transformations in humans (see Fig. 5b and
Table 1), horses exhibit a greater velocity difference:

Vc; trot < Vc; gallop ;

evidenced by the same sequence of characteristic length Lc

increase and characteristic time Tc decrease (Table 2).

Examples of characteristic CS constants for several
animal species are given in Table 3 which in addition provide
data on the glenoacetobular length h (distance between foot
bases). It can be seen that in vertebrates (e.g. tetrapods)
Lc � h, while invertebrates have Lc � 4h, and the relation-
ship between Tc and h in the latter group is less apparent.

It appears worthwhile to comment on selected data in
Table 3.

One of the first in-depth studies on locomotion synergies
in dogs was performed by our colleagues Yu I Arshavski|̄ and
co-workers. In Ref. [7], these authors used their records to

roughly characterize locomotor cycle kinematics in dogs by
two conditions corresponding to the Wilson model:

T� � const � 0:26 s ;

Lÿ � const � 0:5 m :

However, additional analysis of graphical data reported in
Ref. [7] has demonstrated the relevance of the model
treatment procedure being developed in the present work.
Specifically, it has been shown that the dog's cycle synergy has
the form of a basal hyperbola; this inference was confirmed in
Ref. [6].

Comparative studies of overground locomotion in many
reptilian species have been performed by V B Sukhanov [61].
This author analyzed temporal characteristics of locomotor
cycles, besides tracks. He chose a combination of support
patterns and notograms to graphically represent reptilian
gaits. In addition, he documented gecko motion patterns by
filming under laboratory conditions and constructed plots of
their time-specific characteristics versus locomotion velocity.
Special attention was given by V B Sukhanov to the velocity
dependence of the period, T�v�. He demonstrated that in all
reptiles included in his studies, this dependence could be
analytically approximated by a displaced hyperbola

T � Tc � Lc

v

(in monograph [61], the Tc and Lc approximation constants
are denoted by other symbols). The author paid little
attention to stride length variability. Nevertheless, his
approximation of the dependence T�v� implies a linear
relationship between the stride length and velocity:

L�v� � vT � Lc � Tcv ;

and this result confirms his own data obtained in a track study
(see below Fig. 8e). In a word, the findings of V B Sukhanov
[61] provide independent evidence that the CS of reptiles are
also described by the basal hyperbola.

Qualitative studies of Hughes [80] were followed by a
detailed quantitative analysis of cockroach locomotion over a
wide velocity range, carried out by F Delcomyn [75]. The
latter author questioned the validity of Wilson's model which
he considered to be inadequate to the observed phenomena.
Our limited cinematographic records of running cockroaches
of the same species (Periplaneta americana), used in Delco-
myn's experiments, confirmed his findings for low and
intermediate locomotion velocities. The cockroach data
included in Table 3 and discussed below have been borrowed
from the work of F Delcomyn.

The cinematographic characteristics of two myriapod
species, Scolopendra and Julus, have been described at length
in Refs [26, 56]. Their gaits are briefly discussed below (see
Section 2.6.1 and Fig. 7c, d).

In summary, the cycle synergies of various locomoting
objects, fromman tomyriapods, differ only in the value of the
constants Tc and Lc. In other words, they all show spatio-
temporal similarity. Choosing constants Tc and Lc as scale
units, one obtains the normalized representation of cycle
synergy for humans and animals in the form of a unified
hyperbola with the center (Fig. 5f)

x � �1; 1� 0 � e :

Table 2. Cycle synergies of equine paces, h � 0:9 m.

Pace Tc, s Lc, m Vc, m sÿ1 Uc, m sÿ1{

Trot
Gallop

0.42
0.28

1.20
1.52

2.85
5.32

2.48
3.69

{Here, Uc is the swing velocity at a locomotion speed Vc.

Table 3. Characteristics of cycle synergy constants.

Object Tc, s Lc, cm Vc, cm sÿ1 Uc, cm sÿ1 h, cm

Dog [7]
Gecko [61]
Cockroach [75]
Scolopendra [26]

Julus [56]

0.35
0.06
0.05
0.11
0.29

35.6
5.3
1.9
3.5
0.4

101.2
85.2
34.8
31.2
1.3

177.0
105.2
63.7
25.7
1.8

45.5
4.2
0.6
0.9
0.1
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2.5 Cycle structure synergy
The above cycle synergy connects spatial and temporal
characteristics of the entire cycle, including step length and
period. However, an additional synergy, cycle structure
synergy (CSS), is needed to form the internal structure of the
locomotor cycle (support and swing phase durations). The
mathematical description of the cycle structure can be
reduced to a dimensionless parameter g�v�; the knowledge of
its analytical form is sufficient for reconstructing the velocity
dependences of phase durations T��v�, provided the cycle
synergy is also known. However, the primary distinction of
the parameter g is inopportune for the further elucidation of
geometric properties of CSS because the cycle structure
parameter characterizes the relationship between the values
of either temporal or spatial structure components alone:

g � T�
Tÿ
� L�

Lÿ
:

For geometric purposes, the swing velocity u � v=g appears
to bemore suitable because it characterizes the ratio of spatial
(support length) to temporal (swing duration) quantities:
u � Lÿ=T�. The primary distinction of the velocity characte-
ristic u�v� simplifies the subsequent geometric construction of
CSS in the form of an `etalon manifold of stepping on events'
determined by the functional dependence Lÿ�T��.

2.5.1 Symmetry of phase characteristics. Let us now turn back
to the kinematic portraits of the three walking regimes (see
Fig. 3). The swing phase characteristics T��v� or L��v� are
given together with support phase characteristics Tÿ�v� or
Lÿ�v� in order to show their symmetric distribution with
respect to the median T�v�=2 or L�v�=2. It can be seen that in
terms of shape the paired plots, e.g. those of temporal phases
T��v� for the three regimes, depend, on the one hand, on the
shape of period T�v� plots and, on the other hand, have their
`own' shapes readily apparent in the IRW regime.

Let us use angle brackets to designate centered compo-
nents. Then, the property of bilateral symmetry of phase
components T��v� with respect to the half-period T�v�=2
can be analytically written as


Tÿ�T�
� � Tÿ ÿ T

2
� ÿT� � T

2
� ÿ
T��T�� :

The phase components of the stride length L��v� relative to
the half-length L�v�=2 are described in a similar manner (the
preceding formulas should be additionally multiplied by the
velocity v).

Furthermore, the calculation of centered dependences

T��v;Tfix�

�
for different values of isorhythmic fixation

T � Tfix reveals the multiplicative Tfix dependence of cen-
tered plots (Fig. 6a), i.e. the longer the fixed period Tfix, the
farther plots of temporal components



T��v;Tfix�

�
are from

the axis of symmetry.
In order to remove this multiplicative dependence,

centered dependences should be normalized with respect to
the fixed period length. Then, as shown in Fig. 6b, the
normalized forms


T��v;Tfix�
�

Tfix
� T��v;Tfix�

Tfix
ÿ 1

2

coincide. Because experiments on step length fixation were
carried out independently, similar transformations can be

made for the stride length phase components of isometric
regimes. They demonstrate that both displaced and normali-
zed forms hL��v;Lfix�i=Lfix also coincide. Moreover, any
walking regime can be fictively transformed into an iso-
rhythmic regime of a unit period by normalizing the time-
specific phase components T��v� with respect to the period
T�v�. In a similar way, any walking regime is fictively
transformed into an isometric regime of a unit step length by
means of normalization of spatial phase components L��v�
with respect to the step length L�v�. The similarity of phase
characteristic properties is summarized in the following:

Heu r i s t i c 2.3. There is a canonical form of phase
characteristics and, therefore, a canonical form of cycle
structure synergy must exist.

This empirical inference needs to be additionally sub-
stantiated in theory if the analytical nature of canonical forms
is to be understood. The necessary substantiation follows
from the possibility of expressing normalized phase durations
using parameter g:

T�
T
� g

1� g
;

Tÿ
T
� 1

1� g
:

In other words, the normalized phase components of the step
length and period can be presented only via the swing u and
the locomotion v velocities:

T�
T
� L�

L
� v

u� v ;
Tÿ
T
� Lÿ

L
� u

u� v : �2:51�

Therefore, a simple rationale for the foregoing heuristic
concerning the existence of normalized canonical forms of
phase characteristics is offered by the new:

Heu r i s t i c 2.4. In humans, the velocity characteristic
u�v� has a constant form regardless of a walking regime.

Experimental findings (Fig. 6c) confirm this heuristic.
Indeed, experimental points of all series for all regimes
(NW, IRW, and IMW) are distributed along a certain
common line approximately linear in shape:

u � u0 � av :

For comparison, Fig. 6c presents a `data-point' straight
line u � v; experimental points lie above this line and roughly
parallel to it (a l l the experimental points are linearly
approximated using values u0 � 0:43 and a � 1). Moreover,
the same figure depicts two nonlinear approximations, one
(continuous line) for NW points, the other (dashed line) for
the sum total of IRW and IMW points (the separate
approximation of IRW and IMW points yields closely
related curves).

No t e 2.7. The assessment of the relevance of linear or
other forms of functional relation u�v� depends not only on
the accuracy of measurements (e.g. of the step phase
duration) but also on the range of recorded velocities v (see
Ref. [49] for the statistical evaluation of different approxima-
tion variants). It is not always easy to realize a sufficiently
wide range of locomotion velocities under experimental
conditions. It is understandable that in the case of a narrow
range of locomotion velocities one has to apply a linear
approximation of the velocity characteristic u�v�, the use of
which, apart from other advantages, facilitates comparative
assessment. For this reason, we used the linear dependence
u�v� in our earlier studies to approximate a variety of
experimental human walking data including those for
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children [3, 4], healthy adults [27, 28], disabled subjects [6],
etc.

A practically unified velocity characteristic u�v� has also
been obtained for two equine paces (not shown here).

2.5.2 Linear-fractional form. Nonlinear approximations to
the dependence u�v� are analytically described by the linear-
fractional function

u � a1 � a2v
1� a3v

: �2:52�

Table 4 shows coefficients of the form (2.52) for those curves
which approximate experimental findings in humans
(Fig. 6c).

Also, coefficients of the linear-fractional form (2.52) can
be defined in a different way as

u � a1 � a2v

a3 � v � fr �v;A� : �2:53�

These variants may be specified in a matrix form as

A � a1 a2
1 a3

� �
� a1 a2

a3 1

� �
( a1 � a1

a3
; a2 � a2

a3
; a3 � 1

a3
: �2:54�

The former a-coefficients appear to be more suitable to
identify cases of small values of the coefficient a3 (see Table
4), i.e. when the linear-fractional form is close to linear.
However, the form (2.53) will be used in the forthcoming
theoretical reasoning as more convenient for the purpose.

There is a third way to determine the coefficients of the
hyperbolic linear-fractional form, which takes into considera-
tion the algebraic relation between this form and a double
ratio or wurf (see Section 6.13), due to the fact that the wurf
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Figure 6.Cycle structure synergy: centered support phase durations for three variants of period fixation before (a) and after (b) normalizationwith respect

to the period; (c) summary representation of velocity characteristics u�v� for three human walking regimes (using the same data as in Fig. 4a); (d)

schematic representation of the target stepping on event y� as a correspondence between two straight lines Lu and Lv; (e ± g) examples of the

reconstruction of structural etalonsY� for the three walking regimes; (h) schematic definition of complementary events of the three walking regimes: rT Ð

IRW, rL Ð IMW, and rN ÐNW.

Table 4. Coefficients of linear-fractional form.

Regime a1 a2 a3

NW
IRW� IMW

0.14
0.11

2.25
1.74

0.15
0.52
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contains velocity parameters of asymptotes as etalon con-
stants which are opportunely called etalon velocities:

u � fr �v;A� , w �v1; v2; c1; c2� � ÿq : �2:55�

Simple wurf transformations produce a linear-fractional
form

u � c1c2 � �q1c2 � q2c1�v
q1c1 � q2c2 � v : �2:56�

Here, v1 � ÿv, v2 � u, q � ÿs1=s2 is the anharmonicity
constant, and c1, c2 are etalon velocities; in addition one
obtains

q1 � 1

1� q
; q2 � q

1� q
, q1 � q2 � 1 ;

q2
q1
� q : �2:57�

From Eqns (2.56) and (2.53), it follows that

2a � a2 � a3 � c1 � c2 ;

i.e. c1, c2 are the roots of the quadratic equation

c2 ÿ 2ac� a1 � 0 ) c1;2 � a� �a2 ÿ a1�1=2 :

The anharmonicity constant q is computed according to the
formula

q � a2 ÿ c2
c1 ÿ a2

� a3 ÿ c1
c2 ÿ a3

:

Using the above empirically estimated a-coefficients (see
Table 4) and taking into consideration subsequent substitu-
tions (2.54), it is possible to find etalon velocities and an
anharmonicity constant for walking regimes in humans
(Table 5).

Analogous estimates of etalon constants for a few animal
species are collected in Table 6.

The common properties of etalon constants (see Tables 5
and 6) can be listed as follows:

(1�) etalon velocities have the same sign (unidirection-
ality);

(2�) the velocity c2 is much higher than c1, c2=c1 5 100
(anisotropy);

(3�) the constant q differs from 1 (anharmonicity).
If property (2�) is strengthened and the second etalon

velocity c2 is assumed to be infinitely high, then the linear-

fractional form is substituted by the linear one:

c2 !1 ) u � u0 � av ;

where u0 � c1=q2, and a � q1=q2 � 1=q. If the first etalon
velocity c1 is in addition assumed to be infinitely low, the
simplest variant of a linear relationship between swing and
locomotion velocities has the form

c2 !1 ; c1 ! 0 ) u � v

q
:

Thus, in compliance with the wave interpretation of
coefficients of the linear-fractional form (2.53), the use of a
linear approximation to the velocity characteristic u�v� does
not mean the choice of another chronometric model. Instead,
it means the choice of a particular variant in which the second
etalon velocity may be assumed to be very high.

No t e 2.8. It follows from the determining conditions
(2.24) of the Marey locomotor model that the cycle structure
parameter is constant, viz.

g � T�
Tÿ
� L�

Lÿ
� const :

Hence, the linear relation between swing and locomotion
velocities is resulted in the form

u � Lÿ
T�
� v

g
:

Comparison of this relation with formula (2.56) brings about
the conclusion that Marey's model corresponds to the linear
version of the velocity characteristic u�v� � v=q, whose etalon
velocities have extreme values fc1 � 0, c2 � 1g, while the
anharmonicity constant equals the cycle structure constant,
q � g.

2.5.3 Event control metaphor. The ballistic metaphor of
stepping movements reduces a cycle structure control to the
evaluation of two pulsed dynamic events, namely, the foot lift
in the late support phase and the foot touch-down at the end
of the swing phase. Although the ballistic metaphor conside-
rably simplifies the real mechanism of locomotion control
(for example, it ignores the multipulse character of muscle
force generation), the distinguished events are crucial for the
complicated system of control over the motion of multilink
extremities. Restricting ourselves to the consideration of only
two key events, the foot lift and touch-down, we shall
nevertheless have to elucidate their coordination in the
course of the entire stride cycle. In what is forthcoming we
shall need the notion of a target event. It may be conjectured
that the role of the target event in walking is played by the foot
touch-down. This hypothesis is supported by the following
observations;

IMW.When a man tries to step on the stripes stuck to the
floor, he is consciously solving the problem of foot placement
precisely in the expected position and at the correct time. In
this case, the touch-down may be considered to be the target
event. The contralateral limb plays therewith the role of a
coordinating referent with respect to which the target task is
accomplished;

IRW. The subject of the study preliminarily adjusts his or
her gait to the given walking rhythm on the spot and
thereafter maintains it throughout the trial using touch-

Table 5. Etalon constants in man.

Regime c1, m sÿ1 c2, m sÿ1 ÿq
NW
IRW� IMW

0.043
0.041

6.21
11.83

0.44
0.57

Table 6. Etalon constants in animals.

Object c1 c2 ÿq �c�
Horse
Dog
Cockroach
Scolopendra

Julus

0.099
0.046
0.910
1.648
0.987

14.1
4.3

292.5
323.2
274.6

0.850
0.307
0.469
1.150
0.783

m sÿ1

m sÿ1

cm sÿ1

cm sÿ1

mm sÿ1
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down events as a clew. Therefore, in this case too, the touch-
down is the target event. Also, the contralateral leg serves as a
rhythmic referent; in other words, the subject adjusts the
rhythm of `half-steps' to accomplish the task;

NW. Phase alternation occurs subconsciously, but if the
subject has to control it under certain constraints, he (or she)
usually does it by correcting touch-down events.

The universally accepted view of a spatio-temporal
organization of walking locomotion is expressed as the
following:

Ta r g e t p r i n c i p l e o f l o c omo to r e v en t c on t r o l.
Stepping movements are organized by the brain so that the
current control and adjustment of each step cycle during the
walk are performed in relation to the target event of touch-
down. The purpose is to place the foot in the right place and at
a certain instant of time.

It is only natural that the brain uses LRS as its intrinsic
frame of reference. This must be kept in mind when
synthesizing the space-time geometry of the processes
involved in gait control by the `locomotor intellect'. The
brain may be supposed to use two `in-built' maps: the body
map which serves as the LRS, and the map of the surround-
ings acting as RRS. Therefore, the brain has to measure
space-time parameters by comparing the intrinsic body map
with the incessantly varying map of the surroundings. It is
well known that, in the absence of locomotion, visual
perception of the environment is characterized by the
property of `constancy'. In contrast, very little is known
about the travel of space visual image during locomotion.

2.5.4 Target etalons. Let us turn back to the spatio-temporal
image of target trajectory (TT) Z. The synergetic approach
gains advantage from the family of Z�v� inherent in any
locomotion regime rather than from individual TTs.

Let the origin of LRSY � fy � �t; y� 0g be coincident with
the foot lift event (Fig. 2e); then, the next target event (touch-
down of the same limb) is y� � �T�;Lÿ� 0, and the lift event
that follows is yT � Te1. Let us draw the support straight line
Lv � L�yT; yL� [see Eqn (2.48)] which is incidental to the
support phase portion of Z and intersects the space axis at
the point yL � Le2. Let us single out, in addition, another
straight line Lu � L�o; y�� incidental to the swing phase
portion of Z. The target event is defined as the point of
intersection of the support and swing straight lines:

y� � Lu \Lv : �2:58�

In other words, the target event is equivalent to that of the
correspondence of two bundles of straight lines:

B�u; o� � fLug ; B�v; yc� � fLvg ;

which, firstly, have different centers o and yc, and, secondly,
are parametrized with respect to velocities u and v. Well then,
the velocity characteristic u�v�, i.e. cycle structure synergy
(CSS), serves as the analytical expression of this correspon-
dence.

It has been shown in a previous section that cycle synergies
(CS) of all the three walking regimes (NW, IRW, and IMW)
are formed in a similar way, namely, by means of rotation of
the support straight line [see Lemma (2.2) and Corollary
(2.1)]. When the velocity v changes, the `cycle cessation' event
hc�v� traces out, in the general case, the etalon line of cycle Yc,
the shape of which depends on the walking regime which is in

turn geometrically determined by the choice of the support
bundle center:

IRW : yc � fT ) Yc � LT � L�fT; yL� ;
IMW : yc � fL ) Yc � LL � L�yT; fL� ;
NW : yc � fN ) Yc � H�fN� ;

where fT and fL are the axial vectors of fixed events, andH�fN�
is the basal hyperbola, the center of which is the fixed event of
norm fN 2 Lv � L�yT; yL�.

Now, in analogy to the geometric model of the formation
of cycle Yc etalon, one may conclude that under changes of
the locomotion velocity v the target event y��v� also depicts a
certain curve Y� (target etalon), the shape of which is likewise
a function of the walking regime.

An example of graphical reconstruction of IRW etalons is
presented in Fig. 6e. Here, the support straight line Lv rotates
about a point on the time axis fT � Te1 (T � 0:83 s), while the
total cycle vector

hc � fT � yL 2 LT

`slides' along the vertical straight line of the cycle etalon and
the target vector y� traces out therewith the target etalon
curve Y�.

A similar graphical reconstruction of IMW etalons is
illustrated in Fig. 6f. Here, the support straight line Lv rotates
about a point on the space axis fL � Le2 (L � 1:5 m), and the
cycle vector hc � yT � fL 2 LL traces out the horizontal
straight line of the cycle etalon, while the target vector y�
traces out another target etalon curve Y�.

Finally, a similar approach is employed to construct
graphic images of the hyperbolic etalon H and the target
etalon Y� in the NW case (Fig. 6g), when the rotation center
of the support straight line falls on the center of the hyperbola
H�fN�.

To conclude, the geometric rules for the construction of
cycle and target etalons appear fairly obvious and uniform if
the support straight line rotation model is used.

2.5.5 Complementary bases. To wind up the discussion of
cycle structure synergy, it is necessary to obtain algebraic
descriptions of target etalons, i.e. those Y� curves which
approximate experimental points y� � �T�;Lÿ� 0 in Fig.
6e ± g. The algebraic identification of a target etalon is
facilitated by the system approach in which a target event y�
is considered concurrently with a reference event yÿ. This pair
of events forms the TT basis represented by matrix
Y � �yÿ; y�� [see Eqn (2.14)]. The basis vectors have
corresponding etalons Yÿ and Y� that form a system of base
invariants of locomotion chronogeometry.

P r ob l em 2.2. Find the form of target (Y�) and
reference (Yÿ) etalons for three walking regimes NW,
IRW, and IMW.

It seems appropriate to consider a pair of TT, Z and Z �,
rather than a single TT, for two contralateral legs stepping
out of phase. Such TTs intersect at the phase midpoints, i.e.
when one leg is in the swing mid-phase and the other is in the
support mid-phase (Fig. 2e). In this case, it is more convenient
to choose the origin of LRS,Y � �y � �t; y� 0	, at the point of
intersection of the two TTs with respect to which touch-down
and lift events incident to both legs are distributed centrally
symmetrically (Fig. 6h).
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Let us first choose a pair of phase switching events as the
base one

yÿ �
�
Tÿ
2
; ÿLÿ

2

�0
2 Z � ; y� �

�
T�
2
;
Lÿ
2

�0
2 Z : �2:59�

The target event y� of a leg touch-down is different from the
previous definition (2.58) in that it contains an unimportant
multiplier 1=2; similar factors appear in the definitions of
axial events of the support straight line Lv�yT; yL�:
yT � �T=2�e1, yL � �L=2�e2.

The reference event yÿ of the conjugate leg lift is incidental
to the straight line Rv � Lv�o; yÿ� which is parallel to the
support straight line Rv k Lv. In other words, the reference
straight line shows evidence of being the straight line of the
support portion of conjugate TT Z �.

The scalar description of the cycle structure synergy [see
Eqn (2.53)] is converted into the vector condition of projective
orthogonality:

u � fr �v;A� ) y 0�Myÿ � 0 ; M � ÿFA : �2:60�

This locomotor situation differs from the previous one only
by the use of the inverted version of the linear-fractional form.
This explains why the relationship between the matrix of
coefficients A and metric matrix M is written down in a
different way.

The isorhythmic case turned out to be key for the unified
representation of general `locomotion chronogeometry'
because it is under isorhythmic conditions that the naturally
distinguished pair of basic events (2.59) acquires a remarkable
property of `sum fixation'. Indeed, summation of vectors
(2.59) yields yÿ � y� � �T=2�e1 � yT, while an additional
condition T � Tfix connects a fixed IRW event yT � fT with
base vectors yÿ � y� � fT.

Before passing to IMR and NW, let us introduce:
De f i n i t i o n 2.6. Two events are called complementary if

their sum equals the fixed event.
The fixed event of IMW being known [yL �

�Lfix=2�e2 � fL], the complementarity of the IMW basis is
ensured by the choice of a new reference event yÿ �
fL ÿ y� � rL, while retaining the target event y� unaltered.
The choice of the IRW reference event (2.59) is denoted in a
similar way: yÿ � fT ÿ y� � rT. These definitions are supple-
mented by the definition of the NW reference event
yÿ � fN ÿ y� � rN (Fig. 6h), where fN is the center of the
cycle synergy hyperbola (see the previous section).

Thus, if f is an arbitrary fixed event, the determining
relations for the complementary basis can be obtained along
with the bilinear form (2.60):

y 0�Myÿ � 0 ; yÿ � y� � f : �2:61�
As a consequence, the quadratic forms of metric standards
may be found:

Y�: y 0�My� ÿ y 0�Mf � 0 ;

Yÿ: y 0ÿMyÿ ÿ f 0Myÿ � 0 : �2:62�

Thus, problem 2.2 is solved.^
We have demonstrated the theoretical possibility of a

common metric description of different walking regimes in
our first summary report [49] and suggested:

Th e homome t r i c i t y h ypo t h e s i s. Target etalons of
all three regimes (NW, IMW, and IRW) are represented by

metrically identical hyperbolas having the samemetric matrix
and differing in the positions of a center and diameters.

The method of fixed events used in the present study
provides a clear and simple rationale for the hypothesis of
homometricity of locomotion chronogeometry. The diameter
of the basal hyperbola H�yc� depends on the localization of
center yc, and vector 2yc may be regarded as the principal
diameter. This simplifies the homometric description of such
hyperbolas due to the fact that their diameter does not make
the third independent parameter.

2.6 Wave synergy of gaits
The constant velocity of a metachronal wave (MW), resulting
from constancy of an ipsilateral delay as proposed byWilson,
is in conflict with the real locomotion situation. On the other
hand, proportionality of the MW velocity to the speed of
locomotion (as a consequence of constant ipsilateral phasing
and Marey's stroboscopic metaphor) is closer to reality
because the `step-to-step' rule characteristic of certain
arthropods is a special case of such proportionality.

2.6.1 Metachronal waves in myriapods. Stepping movements
of myriapods are of peculiar interest in terms of wave
coordination rules. Let us consider first the locomotion of a
typical centipede, Scolopendra sp., having N � 40 legs and a
body length H � 5 ± 10 cm [26]. The general property of
ipsilateral coordination in this animal is described by:

Th e ` s t e p - t o - s t e p ' r u l e. The choice of a new contact
point on the ground is the responsibility of the forelegs,
whereas each of the remaining legs on either side of the body
is put exactly where the previous one touched the substrate.

In multipedal animals, this walking pattern is readily
apparent on instantaneous photographs on which the
supporting legs can be seen gathered in bundles converging
to contact points (Fig. 7c). The analytical criterion for the
`step-to-step' rule is formulated as

w � ÿv : �2:63�

In other words, the absoluteMWvelocityw always equals the
walking velocity v, but the wave propagates oppositely to the
direction of locomotion (from head to tail). This is the case of
negative metachrony.

No t e 2.9. In this case, the wave to locomotion velocity
ratio is constant: w=v � ÿ1. It is worthwhile to note that
bending waves in fish also progress backward along the body,
and their swimming is also characterized by the constant ratio
w=v � k < 1. This ratio should be expressed as a negative
constant were this not in conflict with the common practice
(see Ref. [76]). In fish, the constant k is smaller than unity
because inevitable slipping of the travelling wave occurs in
water. With this in mind, metachrony in Scolopendra can be
regarded as analogous to fish metachrony with the sole
exception that locomotion in Scolopendra is realized without
slipping.

Another mode of metachronal coordination (see Fig. 7d)
is displayed by millipedes of the genus Julus [56] which have
N5 120 leg pairs (with two contralateral pairs per girdle). A
small positive phase shift makes a wave of ipsilateral leg
transfer easy to see, while contralateral pairs of legs step in
phase with one another. Indeed, several waves simultaneously
run from head to tail along a row of ipsilateral legs, their
length and velocity being functions of the speed of locomo-
tion.
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An instantaneous photograph of a locomoting millipede
Julus sp. (Fig. 7d) shows that legs in the swing phase form
bundles within which they come together to one point of the
substrate. Such a configuration is a sign of positive meta-
chrony. When the legs to be swung are gathered in such
converging bundles, they give rise to a particular mode of
inverted `step-to-step' locomotion in the swing phase [57].
Such a variant of the inverted `step-to-step' (`wing and wing')
rule for the swing phase is termed `stroke-by-stroke' motion.
The Julus gait submits to this rule albeit not very strictly (see
below).

The kinematic criterion for the `stroke-by-stroke' gait is
analogous to the condition (2.63), with the exception that

w � u ; �2:64�
i.e. the MW velocity is positive and equal to the velocity of
legs in the swing phase.

The discovery of the two types of phase-conjugate gaits
(2.63) and (2.64) gave rise to a variety of kinematic
interpretations of wave coordination and gait characteriza-
tion techniques (see Refs [57 ± 59]). Considering gaits (2.63)
and (2.64) as particular boundary cases of interlimb coordina-
tion

`step-to-step': w � ÿv, `stroke-by-stroke: w � u, (2.65)

leads to the following theoretical:
P r ob l em 2.3. Propose such a gait definition which will

include variants (2.65) as particular cases of the general
principle.

The search for the solution of this problem is possible
using different gait metaphors. The following three meta-
phors are considered and compared below: configurational,
trace, and relativistic; the latter is formulated as the `relative
metachrony principle'.

2.6.2 Configurational metaphor. The characterization of
myriapod gaits in terms of leg bundle shape gives rise to a
new coordinative metaphor, the so-called `configurational'
metaphor [57, 58]. A special case of configuration is
exemplified by a transit metachronogram (MCG) of one leg
(Fig. 1a), which combines spatial and temporal scans of the
unipedal walking cycle. But the same transit MCG may be
interpreted in a purely spatial context as an instantaneous
photograph of the collective walking of many people
marshalled into a rank. Then, it is appropriate to put:

Qu e s t i o n 2.4. What type of collective walking gait is
simulated by a transit MCG?

Previously, we have demonstrated the relationship
between the transit MCG obtained in RRS and pendulum
MCG obtained in LRS. The task of constructing an arbitrary
metachronal row (`metarow') can be accomplished in a
similar way but using only spatial transformations of
pendulum MCG. For the simplicity of graphical representa-
tion, we confine ourselves to the one-link `telescopic' leg
model, while pendulum oscillating movements of such a leg
in LRS will be presented in the form of rotational (`wheel-
wise') motion.

Let us consider the two-point leg model containing basal
and distal points (BP and DP, respectively). In LRS, BP is
fixed, while DP in the support phase moves backward at a
velocity v along the rectangular segment of the support
interval of length Lÿ. The usual pendulum leg motion takes
place if DT in the swing phase is assumed to move along the
same segment (a slight elevation of DT above the soil may be
neglected) and forward, at a velocity u. In order to simulate
rotational movements of the leg, the forward movement
during the swing phase should be mirrored with respect to
the basal line. The replacement of support and swing
segments in such a representation by treadmill belts moving
in opposite directions (see Fig. 7e) produces:

Th e two - b e l t t r e a dm i l l m e t apho r. In the support
phase, DPmoves backward along the lower belt. In the swing
phase it moves forward over the upper belt and instanta-
neously jumps within the phase boundaries from one belt to
the other.

In this case, the leg in LRS rotates clockwise, and DP
moves along the rectangular phase contour. The two-belt
treadmill metaphor clearly demonstrates kinematic equiva-
lence of support and swing phases, which is essential for the
configurational and trace gait criteria. For example, we have
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Figure 7. Locomotor postures of a lizard (a), cockroach (b), Scolopendra
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cycle scheme obtained in experiments on a two-belt treadmill; (f)
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wave W; (h) extreme variants of negative Wÿ and positive W� metachro-

nies.
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a right to speak of ordinary footsteps on the lower belt, and
conjugate footsteps on the upper one.

In order to follow the DP motion correctly along the
phase contour with a stroboscope, let us divide the target
trajectory period into time intervals

Dt � T

n

and transfer the space coordinates of the division points yi,
i � 0; . . . ; n onto the fragments corresponding to the support
and swing phases. In this case, similar distances between the
adjacent inner DPs of different phases are defined as

Da� � uDt ; Daÿ � vDt :
Suppose that the gating interval is equal to the metachro-

nal delay, Dt � j. For the construction of an instantaneous
metarow image, it is necessary to distinguish the cyclogram of
individual leg rotation in LRS and distribute sequential
images of the leg cyclogram along the basal line, with each
leg image displaced a distance d. Let the leg images on the
cyclogram be numbered clockwise. Then, two types of
metarow can be obtained by aligning ascending posture
numbers either from tail to head (negative metachrony;
Fig. 7f, top row) or from head to tail (variant of positive
metachrony; Fig. 7f, bottom row). In each of the two cases of
negative �ÿ� and positive ��� metachrony, the distances
between adjacent DPs in MCG are described by the
following formulas

aÿ� dÿ Daÿ �
�
1� v

w

�
d ; a�� d� Da� �

�
1ÿ u

w

�
d

( w < 0 ; �ÿ�
aÿ� d� Daÿ �

�
1� v

w

�
d ; a�� dÿ Da� �

�
1ÿ u

w

�
d

( w > 0 ; ���

which can be substituted, taking into consideration the sign of
MW velocity, by two formulas

aÿ
d
� 1� v

w
;

a�
d
� 1ÿ u

w
: �2:66�

The assumption of aÿ � 0 in the first formula leads to the
`step-to-step' rule [see Eqn (2.67)]. Similarly, the assumption
of a� � 0 in the second formula yields the `stroke-by-stroke'
dependence. How can a generalized definition of configura-
tional gaits be obtained from formulas (2.66)?

2.6.3 Configurational gaits. When gaits are characterized in
terms of the configuration of instantaneous leg positions, the
role of characteristic quantities is played by distances (2.66)
between adjacent DPs in the support and swing phases. These
distances depend on the distance d between adjacent TTs.
However, this relationship is lacking in extreme gait variants
where the corresponding distances vanish:

`step-to-step': aÿ � 0, `stroke-by-stroke': a� � 0. (2.67)

Apparently, the general definition of configurational gaits
must not explicitly depend on the distance d, in conformity
with the `thinning out' metaphor.

Let both the metachronal delay j and the distance d be
initially small. Then, there appears a rather dense metarow
containing a large number of adjacent legs in each of support

and swing phases. Let us `thin out' the initial metarow, e.g.
remove every other leg, that is all legs given even (or odd)
numbers upon initial natural numbering. In this case, all
quantities aÿ, a�, d, and j will increase two-fold without a
change of either MW velocity or ratios aÿ=d and a�=d in
formulas (2.66). A similar conclusion is valid with respect to
other variants of `thinning out' metarow, including nonuni-
form cases.

The reverse transition from a `thinned out' metarow to the
`intact' one can be described as an inverse operation
consisting in the `insertion' of intermediate legs.

Let us declare that all metarow derived from a certain
metarow by means of thinning out and/or insertion are
configurationally equivalent. Then, the configurational gait
may be defined via the condition of constancy of either aÿ=d
or a�=d relation in formulas (2.66). Gaits (2.67) present
special cases of such a definition.

No t e 2.10. In the Marey model (2.24), w � kv. There-
fore, the first relation in Eqn (2.66) for the support traces is
unvaried: aÿ=d � 1� 1=k � const. In Wilson's model, the
second relation in Eqn (2.66) for conjugate traces is
permanent: a�=d � const [according to Eqn (2.28)]. It may
be inferred that both the Marey andWilson models fulfill the
criteria for configurational gaits.

Another variant of defining configurational gaits consists
in the use of a common criterion instead of one of the two
conditions (2.66):

Co � aÿ
a�
� w� v

wÿ u
: �2:68�

In this approach, an arbitrary configurational gait is defined
by the constancy condition for a given criterion: Co � const.
Gaits (2.67) become special cases of one criterion:

`step-to-step': Co � 0, `stroke-by-stroke': Co � 1. (2.69)

The geometric sense of the configurational criterion (2.68) is
elucidated below. For more details concerning the configura-
tional approach see Refs [57,58].

2.6.4 Trace gaits. Let us confine ourselves to the comparison
of tracks left by myriapods on the upper and lower belts of a
two-belt treadmill (Fig. 7e), neglecting the shape of the
bundles formed by their legs in the support and swing
phases. In this case, the distances between adjacent footsteps
should be compared with step lengths rather than basal
distances d, taking into account that these step lengths may
be different on different belts. Indeed, the common definition

L � Lÿ � vT

holds for the lower treadmill belt, and the conjugate one

L� � uT

for the upper belt. With these corrections, the method of gait
definition based on track patterns is analogous to the
configurational approach, excepting the fact that the former
technique uses normalization to the step length. This means
that characteristic quantities in the trace gaits are the
following simple relations

aÿ
Lÿ
� aÿ
vT

;
a�
L�
� a�

uT
;
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while the double ratio (see Ref. [58]) serves as the trace
criterion of the gait:

Tr � aÿ=Lÿ

a�=L�
� �w� v�=�wÿ u�

v=u
: �2:70�

At first sight, the trace-related criterion Tr is, in
principle, indistinguishable from the configurational criter-
ion Co. However, it implies a new possibility and, perhaps,
expediency of projective invariance of gait criteria. Indeed, it
is easy to discern the wurf structure in the double ratio
above. This structure is even more distinct if an additional
constant velocity c0 is introduced, leading to a new
projective criterion

Pr � �v� c0�=�v� w�
�uÿ c0�=�uÿ w� � Pr �c0� : �2:71�

Now, it is possible to fix different values of c0 constant and
thus choose from different previous criteria:

Pr �0� � Tr ; Pr �1� � Co :

It is concluded that configurational and trace gait
metaphors allow for the generalized projective interpretation
and, by analogy with special variants, the introduction of the
general notion of projective gait satisfying the criterion
Pr � const.

2.6.5 General metachronal scheme. In the general case, if 2n-
pod locomotion is steady and coordinationally uniform, then
the locomotor cycle (LC) serves as the basic motif for
translational definition of the target trajectory (TT). In its
turn, TT is the basic motif for translational definition of the
locomotor system or, in other words, of the spatio-temporal
`crystal' containing locomotor kinematics of all legs.

It follows from the MW definition as Eqn (2.31) that
w � �j; d� 0 is the translation vector of TT for one row of
ipsilateral legs. In this case, the initial TT events are aligned
along the straight line W which is a formal graphic image of
MW.

If both the TT parameters and the spatial shift d are fixed,
the potential variability of metachronal delay j is restricted
by values jÿ and j� (Fig. 7g). The TTs do not intersect, and
there are no collisions of adjacent legs, when the time interval
of kinematic safety j 2 �jÿ;j��.

No t e 2.11. The existence of `overlapping' tracks empha-
sizes the importance of the topical problem of collision of
fore- and hindlimbs in tetrapods. This problem has a
structural solution: the track of tetrapod hindlimbs is wider
than that of forelimbs. In hexapods, the tracks of leg pairs
relevant to different body segments are also of different width
(Fig. 7a, b). But in myriapods, in particular, Scolopendra [26]
and Julus [56], all leg pairs of different girdles leave similarly
spaced tracks (Fig. 7c). This probably explains why the
prevention of adjacent leg collision in myriapods is achieved
by kinematic means.

Cophasal TTs being consistent with a zero delay j � 0
and infinite MW velocity w � 1, the use of gait velocity
criteria of the type (2.71) dictates the necessity to distinguish
two MWs, positive and negative, which are defined by two
velocity intervals of kinematic safety:

Wÿ: w 2 �ÿ1;ÿv� ; W�: w 2 �u;1� : �2:72�

In the graphic spatio-temporal representation, the `step-
to-step' rule (2.65) manifests itself in that the support TT
portions of one wave set are incidental to the same support
trace straight line Wÿ (Fig. 7h) which has the negative slope
ÿv in LRS. In other words, the support portions of TT are
`glued' in space-time, while the adjacent feet are standing at
one trace point.

The graphic sign of the `stroke-by-stroke' rule is described
in a similar way, i.e. TT portions corresponding to the swing
phase of the adjacent legs are incidental to one space-time
straight lineW� (Fig. 7h). In other words, the swing portions
of TTs are also glued in space-time.

2.6.6 Relative metachrony principle. Let us consider the TT of
a single n-pod row, with individual TT Zj numbered from tail
to head � j � 1; . . . ; n�. It can be seen fromFig. 7g that the first
TT Z1 is associated with a trace string network which can be
related to the trajectory reference system (TRS). For clarity,
Fig. 7g shows basis TRS vectors as TT segments:

b1 � �ÿTÿ;Lÿ� 0 � ÿTÿ�1;ÿv� 0;
b2 � �T�;Lÿ� 0 � Lÿ�uÿ1; 1� 0; �2:73�

but the way to more completely defined B-basis remains to be
found (see below).

In relation to TRS, the gaits (2.65) are characterized in
canonical terms, with MW being coincident with one of the
two TRS axes. These extreme cases are generalized by a
`rigorous' connection between MW and TRS axes, being
manifested as:

Th e r e l a t i v e me t a c h r on y p r i n c i p l e (RMP). The
MW velocity is unvaried relative to TRS. This means that
relativistic gaits are consistent with such a law governing
variation ofMW velocity with a change of locomotion speed,
at which the MW trajectory has constant slope in TRS.

Let a certain event y incidental toMW be distinguished in
LRS and z be an equivalent event in TRS:

y � Bz ( y � t�1;w� 0; z � y�1;o� 0 :

The slopes of base axes are given by TT, v1 � ÿv, v2 � u,
while scale characteristics of the B-basis are assumed to be
arbitrary:

B � �b1; b2� �
ÿ
tb�1;ÿv� 0; yb�uÿ1; 1� 0

�
: �2:74�

Let us introduce a scale (gauge) velocity vb � yb=tb and
formulas for direct and inverse linear-fractional transforma-
tions (LFT) of MW velocity values, which immediately ensue
from the linear transformation (2.74):

w � ovb � v
1� ovb=u

, o � v
ÿ1
b �w� v�
1ÿ w=u

:

Comparison of the second expression with Eqn (2.71)
indicates that the RMP-constant o may serve as a Pr-
criterion if the gauge velocity equals

vb � v� c0
1ÿ c0=u

:

Consequently, the RMP is compatible with the above
definitions of configurational and trace gaits, which is what
we are expecting.
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Thus, the theoretical analysis of different versions of a
unified explanation concerning the existence of phase-con-
jugate gaits (2.65) leads to the following conclusion:

the diversity of locomotor coordinations submits to the
general principle of projective correspondence of three velo-
cities fv; u;wg, namely, the velocity of locomotion, the swing
velocity, and the velocity of metachrony.

The analytical formula of this conclusion may be the
double ratio (2.71), i.e. the projective invariant (wurf) of the
following general form

PI : w�ÿv; u;w; c0� � s0 : �2:75�
The previous conceptual reasoning was intended to satisfy

the boundary functional conditions (2.65) which impose
certain restrictions on the form of functional dependences.
In terms of the above criteria, each individual always realizes
one and the same gait. Using (2.75) as the determining
formula, any gait can be characterized by two constants, s0
and c0.

2.6.7 Three-wurf problem. Doubtless, one of the remarkable
properties of the wurf (2.75) is that it a priori relates
independent entities of locomotion control, namely, locomo-
tor cycle (LC) and metachronal wave (MW) properties.

If the generalized formula (2.75) contains a fixed MW
velocity w � const � w0, the introduction of a new notation
for the constants will result in a projective relationship
between velocities v and u or the structural invariant
described in the previous section [see Eqn (2.71)]:

SI : w�ÿv; u; c1; c2� � q0 : �2:76�

Alternative fixation of the swing velocity u � const � u0 in
formula (2.75) leads to the wave invariant

WI : w�ÿv;w; c1; c2� � p0 �2:77�

compatible with the general condition (2.75).
It should be understood that, because invariants SI and

WI are compatible with the projective condition PI, they can
exist regardless of the initial assumptions concerning a
constancy either metachronal velocity w or swing velocity u.
The invariants SI andWI being postulated a priori, condition
(2.75) may be regarded as a corollary to these postulates,
expressing the constants in Eqn (2.75) via constants of the
conditions (2.76) and (2.77):

c0 � c2 ; s0 � q0�p0 ÿ 1�
p0 ÿ q0

:

Therefore, RMP is equivalent toWI but allows the definition
of the wurf constant p0 to be improved, provided constants s1,
s2, and o are known.

2.6.8 Wave gaits in arthropods. The first objects of our
locomotion research were myriapods of the genera Julus [56]
and Scolopendra [26]. This made us abandon traditional
methods developed largely for the investigation of quadrupe-
dal gaits in favor of a wave description, using a w�v� type
dependence. Before demonstrating the efficiency of the wave
approach for the description of tetrapod gaits, it is appropri-
ate to consider the locomotion strategy of millipedes (Julus)
and cockroaches.

The close resemblance between configurational properties
of the Julus metachronal limb row and the `stroke-by-stroke'

gaits is readily apparent due to the short distance d between
the adjacent ipsilateral legs and small metachronal lag j
(Fig. 7d). This similarity greatly facilitates both the observa-
tion and the measurement ofMWpropagation. For example,
it appears possible to mark swing-zone boundaries in the
course of frame-by-frame analysis of Julus locomotion and
use this graphic approach to reconstruct space-time tracks of
phase zone movements in order to explicitly measure MW
velocities. The sketches thus obtained were used inRef. [56] to
relate MW velocities w to the speed of locomotion v. If the
notion of wavelength lw � wT is additionally introduced as
well as the notion of its phase components, i.e. l� � wT�,
these quantities can be approximately estimated on instanta-
neous photographs by counting the leg number in the support
and swing zones. It is understandable that in a `step-to-step'
gait, the wavelength is identical to the stride length as
wavelength components are to the stride length components:

lw � L � Lÿ ; l� � L� :

Whereas conjugate equalities hold for `stroke-by-stroke'
gaits, with

l� � uT� � Lÿ :

In studies [26, 56], we used a visual evaluation of wavelength
components for the correction of frame-by-frame time-
specific measurements on step phase durations.

Figure 8a, b shows the base synergies of the millipede
Julus sp. It can be seen that the cycle synergy L�T�, cycle
structure synergy Lÿ�T��, and velocity-dependent character-
istic u�v� resemble human walk analogues considered earlier
in this paper. The approximation parameters for the

10

5

0 1
Time, s

L
en
gt
h
,m

m

L�T�

Lÿ�T��

a
40

20

0
Speed v, mm sÿ1

S
p
ee
d
v,
m
m

sÿ
1

10 20

w�v�

u�v�

b

100

50

0
Speed v, mm sÿ1

S
p
ee
d
v,
m
m

sÿ
1

20 6040

w�v�
w

u

u�v�

d

2

4

0 0,60,40,2
Time, s

L
en
gt
h
,m

m

L�T�

Lÿ�T��

c

100

50

0
Speed v, cm sÿ1

S
p
ee
d
v,
cm

sÿ
1

50 100

u�v� f
10

5

0

0 10050

L
en
gt
h
,c
m

Speed v, mm sÿ1

L

dk

e

Figure 8. Examples of basic kinematic functions of millipede Julus sp. (a,

b), cockroach Periplaneta americana (c,d), and plate-tailed gecko Tera-

toscincus (e, f).

1016 V V Smolyaninov Physics ±Uspekhi 43 (10)



dependences L�T� and u�v� in Julus are presented in Tables 3
and 6, respectively. An additional distinction of the `syner-
getic portrait' of human locomotion consists in the appear-
ance of a wave characteristic w�v�. In this case, the wave
function w�v� does not coincide with the velocity function
u�v� as it should be in a `stroke-by-stroke' gait because the
MW velocity is always approximately 1.5-times higher than
the swing velocity: w�v� � 1:5u�v�.

No t e 2.12. Special attention has been given to the
examination of locomotor movements in decapitate Julus
preparations (obtained by cutting neural pathways leading
into suprapharyngeal ganglia) [29]. In these experiments,
locomotor movements of a functionally restrained prepara-
tionwere either elicited by electrical stimulation of abdominal
ganglia or mimicked by means of mechanical stimulation,
using a treadmill belt to displace legs. The study has shown
that forced locomotion in Julus is characterized by kinematic
synergies resembling those of normal locomotion.

Let us now turn to the synergetic portrait of cockroach
running (Fig. 8c, d), based largely on the experimental data
reported by Delcomyn [75]. Evidently, our theory fairly well
describes these findings too (see Tables 3 and 6 for relevant
approximation parameters). Of independent interest is the
property of metachronal coordination in this portrait.
Delcomyn criticizes Wilson's model of a constant metachro-
nal delay [see Eqn (2.28)] and provides convincing evidence of
a monotonic decrease of this delay with increasing velocity of
locomotion. If the metachronal delay data contained in Ref.
[75] are to be converted into information on the MW velocity
w � d=j, knowledge of distance d between the support
intervals (Fig. 7a) is indispensable.

Our estimating cinerecords of running locomotion in the
cockroach (Periplaneta americana) provided a more accurate
value of d � 2:5 cm, on the one hand, and confirmed the
closeness of our kinematic measurements (delay j and step
phase duration) at low andmoderate locomotion velocities to
those of Delcomyn, on the other. Comparison of the resultant
u�v� and w�v� plots (Fig. 8d) showed that w�v� � u�v�. This
means that the `stroke-by-stroke' strategy is realized through-
out the entire velocity range of cockroach gaits.

2.6.9 Relay gaits in tetrapods. Generally speaking, the wave
metaphor does not require a large number of ipsilateral limbs.
When the principle of kinematic homogeneity is obeyed, the
properties of wave coordination are determined in the same
way for any pair of adjacent ipsilateral legs. Such an approach
allows ipsilateral leg pairs in tetrapods to be considered as
minimal fragments of the general wave scheme.

Since the publication of an album containing photographs
of sequential locomotor postures of man and animals by
E Muybridge in the late 19th century [85], many authors of
comparative reviews and experimental studies have illu-
strated locomotor movements with a series of contour
drawings based either on Muybridge's photos or their own
cinematographic records (see Refs [15, 61, 76]). Muybridge
himself was well aware that this approach was cumbersome
and inconvenient. To make up for these drawbacks, he
introduced the support pattern technique (see Section 2.3.4
above). The reconstruction of interlimb coordination proper-
ties from TT graphs is also underlain with the analysis of
frame-by-frame sketches of horizontal positions of distal leg
ends (as opposed to the whole object's contour). A distin-
guished record fragment is presented in the form of a
geochronogram (GCG), i.e. a set of vertically aligned

horizontal straight lines, each corresponding to a horizontal
space RRS axis on which horizontal coordinates of distal leg
ends are depicted by a series of points. The axial straight lines
are drawn from bottom to top in ascending order of frame
numbers, with a vertical shift Dt (interframe interval). A
cinematographic record fragment being thus presented
graphically, the GCG of an individual leg is a set of points
with coordinates xi� jDt�, where i is the leg number, and j is
the frame number. Evidently, since GCGs show discrete
images of limb TT, their support phase portions are
approximated by vertical straight line fragments, and por-
tions corresponding to swing phases by oblique lines.

In experiments on a steppe tortoise (H � 17 cm,
d � 13 cm), we managed to obtain records of its motion
over a broad range of velocities. Frame-by-frame contour
sketches obtained as described in the previous paragraph
demonstrate that these animals use a relay gait, with
contralateral legs being out of phase with each other
(Fig. 9a). That is to say, the foreleg starts to be swung
approximately from the place where the hindleg touches the
ground and immediately after the latter stops.

It is clear that the new term `relay gait' has been coined to
denote a specific variant of the stroke-by-stroke gait of
tetrapods because in this case the equality w � u is essential.
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We have obtained a limited number of cinematographic
records relevant to the gait of common lizards (H � 9 cm,
d � 2:9 cm) collected near Moscow. Figure 9b presents two
examples of ipsilateral TTs for two locomotion velocities,
which suggest that lizards, similarly to tortoises, use the relay
gait (their contralateral legs are also out of phase with each
other).

Using the same approach, we have constructed GCGs of
the horse's trot using contour drawings from the book of
P P Gambaryan [15] (Fig. 9c). This figure also reveals a clear-
cut tendency toward the relay coordination strategy.

Support diagrams of the dog's gait at 0.83 and 2.22 m sÿ1

in Ref. [7] indicate that it is also best described in terms of
relay coordination. Our comparative study of walk kine-
matics in normal dogs prior to and after damage to the
cerebellum [5] has likewise given evidence that such a lesion
fails to affect the relay principle of gait organization.

In conclusion, it is worthwhile to discuss the results of
reptilian locomotion studies reported by V B Sukhanov [61].
It can be shown that the relay coordination hypothesis allows
us to bring into accord two sorts of data obtained indepen-
dently by track analysis and chronogram-based technique. By
way of example, we shall consider the data obtained in
experiments on a gecko specimen having a total body length
H � 12:5 cm and glenoacetobular length h � 4:2 cm. The
plots of dependences d�v� and L�v� are presented in Fig. 8e. It
can be seen that the step length increases linearly with
increasing locomotion velocity, while the shift of sequential
footprints d�v� due to the placement of one ipsilateral leg
slightly behind or ahead of the other monotonically grows
near zero. Given that similar data for a number of geckos of
an approximately equal size are available, it is possible to
construct the general cycle synergy. Thereafter, the cycle
structure parameters g for different legs (Sukhanov calls the
quantity 1=g the `working limb rhythm') are averaged and the
swing velocities u � v=g for the points contributing to the
cycle synergy graph are computed. This procedure allows the
linear approximation u � 34:5� 0:83v to be used in subse-
quent descriptions (Fig. 8f).

However, data for the evaluation of MW velocities are
lacking from Sukhanov's work. This author characterizes
various gaits in terms of diagonal support duration
jd � T2Dÿ rather than metachronal delay j. Unfortunately,
the quantity jd is of little value since the relationship between
jd and j is not varied in a one-to-one manner.

Another theoretical approach to the solution of the
inverse gait reconstruction problem consists in the verifica-
tion of the relay hypothesis, w�v� � u�v�. In this case, the
calculation of j � d=u leads to the dependence

d � Lÿ dÿ jv � Lÿ
�
1� v

u

�
d

for a shift of ipsilateral trails, which fairly well approximates
the experimental points (Fig. 8e).

Finally, the book by Sukhanov contains frame-by-frame
contour sketches of locomotor postures of the gecko, which
can be used to construct geochronograms (Fig. 9d) in support
of the relay hypothesis.

2.7 System of locomotion synergies
Before summarizing the foregoing experimental and theore-
tical considerations, it is appropriate to discuss in brief
general methodological questions.

2.7.1 Locomotor paradigms. In the beginning of this section,
we mentioned the necessity of completing Marey's pro-
gramme which initially had the primary objective to eluci-
date locomotion laws and was finalized by the author himself
as far as the stroboscopic metaphor was concerned (see
Section 2.3.3). Today, it is clear, however, that this metaphor
was inadequate. The search for an adequatemetaphor poses a
special methodological problem which requires the adoption
of an appropriate scientific paradigm to be resolved. In the
foregoing sections, we have considered various locomotor
metaphors by comparing different ways of the gait definition.
Let us now consider different approaches to the elucidation of
locomotion laws.

``We call a law a numerical relation between different
phenomena. In this sense, there can yet be no well-defined
physiological laws... and the meddling of mathematicians
would be inopportune till experience and exploration of
nature have brought precise observed data which can by
itself serve as the starting point for computation. There is no
doubting in the existence of numerical relations between vital
phenomena, which would be discovered sooner or later,
depending on the accuracy of methods adopted for
research'' [37].

It appears that Marey ascribed the possibility of experi-
mentally discovering a biomechanical law solely to the
accuracy of measuring techniques. Such a view is certainly
correct, but it is incomplete. One should know, in addition,
what and how to measure and for what purpose, too. Indeed,
creative work in experimental science begins with answering
these questions. It is directed by the conceptual question
`what for?', organized by the model question `what?', and
completed by the methodical questions `how?'.

Marey started his experimental survey from the classifica-
tion of various paces (`what for?') and reduced the problem to
the description of stride phases relevant to different legs. This
required measurement of the time moments at which the legs
came in contact with the substrate during locomotions
differing in pace patterns (`what?'). Marey's experimental
genius led him to the development of podographic and other
methods for keeping records of stepping movements. In other
words, it prompted him to answer the questions of type
`how?'. In the framework of the pace classification meta-
phor, Marey successfully solved the problem of interest and
created a `synthetic model' described in the previous Section
2.3.3. However, the `problem of laws' governing locomotor
movements remained unresolved. To be precise, it was not
even posed because no possible answers to the main question
`what for?' were offered.

Could Marey answer these questions? Doubtless not, in
the context of the stroboscopic metaphor, because this
metaphor ignored the problem of `law-making' activity in
`animal organisms'. It took a century of development of
biomechanics and a change of paradigms before such a
possibility appeared. A fundamental contribution to the
creation of the new biomechanical paradigm proceeding
from the `physiology of activity' concept was made by
Bernshte|̄n [10] who suggested a hierarchy of the levels of
locomotory act control and distinguished a special level of
generation of stereotyped locomotor patterns. Also, he
coined the term `synergy' to refer to locomotion control at
this level.

The paradigmatic thinking is known to be a form of
conceptual reasoning which relies on a certain basis set of
semantic referents on which to base the model and the theory
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of a given phenomenon. For this reason, a change of
paradigms inevitably leads to a change of basic notions. The
notion of synergy has become a new referent for the
physiology of activity. This notion proved to be both
essential and very fruitful. In recent years, it has been
extensively exploited to develop a new line of scientific
research (synergetics) understood, in general terms, as a
science of cooperative phenomena in multicomponent sys-
tems.

It is worthwhile noting that a change of metaphors is
either analogous to a change of paradigms or constitutes a
special case of the latter, with the metaphor taken to mean a
concrete model image of the phenomenon under considera-
tion. When referent notions are preserved but the model of
their relations changes, it appears more appropriate to speak
about a change of metaphors. For example, the kinematic
notions of locomotor movements have been borrowed from
mechanics and can hardly change though the semantic model
of their system organization can.

Our interpretation of the tasks of locomotor movement
control as those of synergetic constructions designed to
overcome redundant degrees of freedom of motor end
organs and locomotory acts has led us to a comparative
study of human locomotion regimes [27]. Our question `what
for?' implied the elucidation of the diversity of locomotion
synergies, while the ensuing question `what?' laid emphasis on
the identification of spatial and temporal characteristics of
locomotor cycles, i.e. interparametric relations constructed
by the brain in the form of synergies. We were not actually
faced with a separate question `how?' because we largely used
routine methods (with the exception of specialized monitor-
ing of steady locomotion in test subjects). Our first experi-
mental series (see Ref. [27]) had much in common with those
of Marey barring the use of electric sensors, instead of
pneumatic ones, to improve the accuracy of recording stride
phase boundaries. In essence, we used the old method of
Marey to solve a new (synergetic) problems. A change of
metaphor in the kinematic experiments was prompted by a
new understanding of the nature of locomotion laws.

2.7.2 Correspondence: synergy! invariant. Interestingly,
Marey's definition of a law is analogous to the definition of
synergy. Indeed, the term `numerical relation' in this
definition (see the last quotation) can be understood as a
constant ratio, and `different phenomena' as independent and
given by quantitative information, i.e. by a certain set of
quantities. Because the number of independent quantities
defining a given phenomenon is actually the number of the
degrees of freedom of this phenomenon, any constant ratio
plays the role of a constant relation which reduces the number
of independent quantities, namely, reduces the number of
freedoms of the phenomenon's system organization. Taking
these semantic modernizations into account leads to the
following:

De f i n i t i o n 2.7. The law of system organization (of a
phenomenon, object, motion, etc.) is designated a constant
relation between independent characteristic quantities, which
reduces the system's variability freedoms.

In the general case, concrete forms of the laws show an
additional dependence on the specific properties of the system
(structure, function or mode of control [55]) under study.

In the foregoing, we had an opportunity to examine the
properties of variability of leg joint trajectory shapes in RRS
and LRS (Fig. 1a, b), for instance, in the case of altered

locomotion speed. Thereby, we were able to determine the
synergies of such trajectory shapes. However, we chose not to
dwell on this extensive subject in order to concentrate on
other types of synergies which are directly related to the
kinematic control of stepping movements, i.e. to kinematic
locomotion laws.

Another distinctive feature of our locomotion research
programme consists in that the aim of experimental examina-
tion of synergies is set as:

A ` d i s c o v e r t h e l aw ' t a s k. This task implies the
elucidation of invariant functional relationships between
independent locomotor cycle characteristics through the
comparison of locomotion regimes.

Here, the invariance condition requires that the relation
between all kinematic characteristics remain unaltered, firstly
with respect to the natural variability of locomotor move-
ments, associated, in particular, with a change of locomotion
velocity v, and, secondly, with respect to the `regime'
variability at changing regime fixations and quantities being
fixed. It is this artificial approach that enabled us to decouple
two synergies: cycle synergy and cycle structure synergy.

Either such synergy is elementary, i.e. it reduces one
parametric degree of freedom of the target trajectory. Such a
mathematical specification of synergies allows their inter-
pretation as locomotor diversity invariants of target trajec-
tory shapes and consideration as locomotor cycle laws.

2.7.3 The problem of base synergies. The integrated motion
of multilink limbs is generated with the contribution from
many synergies of, so to say, different levels of control. This
dictates the necessity of searching for criteria for the
splitting of synergetic control levels. It appears that
synergies must be differentiated and classified in terms of
the number of relationships between independent variables
and parameters that they form, i.e. by the number of
reduced motion variability freedoms. In addition, elemen-
tary synergies, each reducing a single degree of freedom,
should be distinguished.

When distinguishing basic characteristics (see Section
2.2.6), we are guided in the first place by mathematical
criteria. However, it would be more in point to be based on
the following:

De f i n i t i o n 2.8. Base synergies are designated func-
tional relations between independent parameters of a loco-
motory act, formed by the controlling system, i.e. the brain, in
order to ensure goal-oriented control Ð strategic, tactical,
and operating.

This explains why all subsequent attempts to search for
base synergies required additional semantic substantiations
in the form of such notions as `target and reference events',
`configurational gaits', and `relative metachrony principle'.

We are sure that knowledge of biomechanical laws of
animal and human locomotion is necessary to be acquainted
with those mathematical problems which the brain has to
solve when it forms motor synergies. Therefore, the elucida-
tion of biomechanical laws being in essence an intermediate
procedure in physiology of motor activity, it is nevertheless a
very important operation which determines the direction of a
subsequent search for adequate neurophysiological models.

2.7.4 NewmethodÐ new system.The aforesaid interorganism
generality of analytic representations of two synergies, CS
and CSS, which can be interpreted geometrically as a
locomotor invariant system (LIS), provides theoretical evi-
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dence of the kinematic similarity of stepping locomotion in all
walkers, both vertebrate and invertebrate. The LIS concept
being developed in this paper differs from our earlier version
(see Refs [27, 28, 30, 49, 59]) in a greater degree of
mathematical generality.

An interregime property of the velocity characteristic u�v�
was first demonstrated in our work [27]. This empirical
finding made us consider u�v� as a general invariant (GI) of
all the three kinematic walking regimes. In such a mathema-
tical context, it is natural to refer to one of the additional
conditions, e.g. the condition of period constancy, T � const,
or stride length constancy, L � const, as a concrete invariant
(CI) of IRWand IMW, respectively. The introduction of such
a `two-invariant' system for the definition of walking regimes
was methodologically justified in the first place by the fact
that the formal system approach `by analogy' raised the
problem of specification of an a priori unknown concrete
invariant of NW.

However, the analogy was at that time sought not only in
the subject matter content (the necessity of distinguishing a
`regime invariant') but also in the form (the necessity of
searching for a quantity with a property of `constancy'
specific to just the NW regime). The quantity possessed of
such a property was first found empirically as a product of
swing duration and step length, i.e. P� � T�L. It proved to
remain more or less constant throughout the entire range of
human walk velocities. For this reason, the first `productive'
LIS model of human walking (see Refs [27, 28]) was formally
defined as

LIS : fGI;CIg ( GI � �u�v�g ;
CI � fP� � const;T � const;L � constg :

Here, GI has a monofunctional representation, whereas CI
has to do with alternative polyfunctional (so to say,
switching type) regimes in which the tactical control block
can switch to the performance of several (in this case, three)
regime-dependent functions. The presence of a special NW
function P� � const in this block inevitably led to functio-
nal discretization of the regime executive power over human
locomotion.

The fixed sum method used in this study appears to be
more adequate to the tasks of locomotion control because it
offers a unified variant of CI specification based on the
construction of cycle synergy (CS) as described above. The
newLISmodel in which the role of two invariantsGI andCI is
played by CS and CSS provides a formal definition of the new
model

LIS : fGI;CIg � �L�T�; u�v�	 :
In the general case, this system is incomplete because it

does not take into consideration the interlimb coordination
properties, but it is sufficient for bipeds in which permanent
features of contralateral phasings are taken into account
default. When the leg number is N5 4, phase patterns of
ipsilateral locomotor cycles need to be identified and
characterized. Therefore, the complete LIS version in the
case of an implicit condition of constancy and uniformity of
contralateral phasings includes three invariants

LIS : fCI;GI;WIg � �L�T�; u�v�;w�v�	 ; �2:78�

whereWI is the wave invariant.

Rewriting the determining conditions of models (2.24)
and (2.28) in the form of formula (2.78):

LISMM :

�
L � const; u � v

g
; w � kv

�
;

LISWM :

�
T�
T
� Lÿ

L
� 1; u � const; w � const

�
;

leads to concrete LIS versions of theMarey andWilsonmodels
(MM and WM, respectively) appropriate for comparison
with the general model (2.78).

2.7.5 From myriapods to man. The generality of kinematic
walking laws for arthropods and humans revealed in our
comparative studies naturally provokes thought about the
phylogenetic invariance mechanisms of just the kinematic
control programmes by virtue of occurrence of substantial
differences between mass-inertial properties of locomotor
systems in invertebrate and vertebrate walkers. Locomotor
movements are known to be highly automated synergies
organized by common generating mechanisms. It is therefore
possible, as a preliminary version, to assume that the
simplicity of structural and functional realization of the
locomotor cycle generator may account for phylogenetic
universality of kinematic synergies.

Mathematicians (and not infrequently physicists) use the
`simplicity' criterion as a criterion of `truth'. Mathematics is a
linguistic science whose language has been developing in the
context of solution of various problems amenable to
mathematical formulation. Therefore, the heuristic principle
of equivalence of `simplicity and truth' can really serve as a
criterion for the adequacy of `language and problem'. On the
other hand, just the physics oriented to learn laws of nature
plays the role of a task-provider and therefore depends on
linguistic adequacy. However, progress in physics depends
not only on the development of adequate mathematical
methods but also on the availability of adequate instruments
which meet specific criteria of truth and hence simplicity.
There is one more (third) criterion used in biomechanics; we
call this adequacy criterion the algorithmic criterion. The
brain controlling volitional and locomotor movements has
its own criteria of `simplicity'. The method of synergies
appears to be one of the principle tools to achieve a
`simplicity' of control.

Myriapods and man occupy the extreme ends of the
enormous range of pedal locomotor systems. Since these
extremes `meet' under the umbrella of a unified kinematic
theory, there is every reason to assume fundamental general-
ity of the control principles realized by neurophysiological
mechanisms (simple variants of neurophysiological models
have been described in Refs [49, 53]).

Former metaphors of locomotion synergies can be
characterized as declarative, descriptive, and classifying;
they contain intuitive and groundless qualitative rules the
translation of which into quantitative language reveals their
complete or partial inconsistence with the real locomotor
laws. The new metaphor proposed by us can be characterized
in a somewhat different way. On the one hand, it is a libernetic
metaphor because its development proceeds from the specifi-
cation of virtual freedoms attendant to kinematic diversity of
target trajectories. On the other hand, it is a synergetically
canonical metaphor because the aim of the theory is to reveal
the entire stock of kinematic relations treated as locomotion
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control synergies. We do not know yet how kinematic
synergies are formed at the neurophysiological level, but we
are in the course of understanding which kinds of mathema-
tical problems the brain has to solve to ensure integrated
organization of locomotor movements.

3. Chronometric postulates

Relativity theory belongs to the

class of fundamental theories.

A Einstein

The locomotion geochronometry described in Section 2 is
analogous to the well-known Minkowskian geometry even
though the analogy is not immediately obvious. More general
models of a special theory of relativity (STR) need to be first
considered in order to elicit the similarity. In the present
section, we shall use the postulate-based theoretical strategy
of A Einstein to first generalize his postulate of the constant
speed of light (PCSL) and examine the mathematical
consequences of such generalization.

Our strategy for the construction of the generalized
geochronometric model is based on the geometric method of
specification of the base invariant system (BIS), described in
the Appendix. In geometry, a free group of affine transforma-
tions is reduced with the aid of BIS to an 1-parametric group
of metric transformations. It has been shown in Section 2 that
in locomotion, the virtual diversity of motor coordinations is
reduced, using the locomotor invariant system (LIS), to an 1-
parametric diversity of locomotor realizations called locomo-
tion regime. The kinematics of locomotor movements have to
do with the space-time characteristics of motor acts. This
explains why, from the formal point of view, the problem of
LIS identification can be more explicitly interpreted as a BIS
problem of that space-time geometry which is formed by the
controlling system, i.e. the brain. Therefore, in the framework
of this context, it is possible to speak about a definite brain
geochronometry and formulate mathematical problems
aimed at the description of locomotor movements as
problems pertaining to the elucidation of metric properties
of locomotion control geochronometry.

Formally speaking, the postulate-based strategy of
A Einstein provides the possibility to declare the existence of
such `etalon waves' in the brain, the velocities of which have a
property of invariance with respect to the varying locomotion
speed. Such a declaration does not extend the sphere of STR
action to the low-velocity region of locomotor movements; it
only suggests the possibility of other wave processes analo-
gous to the STR light wave in terms of independence of wave
velocity from the speed of reference systemmovement. In this
case, etalon wave velocities in the brain are consistent with
nerve conduction velocities. That is to say, they are much
lower than the speed of light. Such a way of formal
interpretation of the locomotor theory of relativity (LTR) is
analytically correct, but it does not facilitate understanding
the neurophysiological nature of locomotor relativism.
Therefore, we believe that the formal transition from
relativistic mechanics to `relativistic biomechanics' is irrele-
vant without the search for a common constructive basis. To
avoid the confusion of different approaches, we choose to
discuss constructive aspects of geochronometric procedures
in Section 4 below.

To sum up, the results of biomechanical studies on
kinematic synergies of stepping movements in animals and
humans (to be precise, the results of attempts at theoretical

spatio-temporal representation of step synergies rather than
of experimental studies proper) dictate the necessity to revise
the conceptual basis of STR, at least for the purpose of
constructing the generalized geochronometric model.

On the whole, the task of generalizing the well-known
Einstein version of STR can be solved regardless of the
secondary objective of establishing its relationship with
LTR. Such an independent approach used in our earlier
work [54] is described below and supplemented by a short
review of the known methods for the derivation of the
Lorentz transformation.

3.1 Types of physical theories
Physicists are well aware that STR is very simple, even
elementary, as far as its mathematical structure is concer-
ned. At the same time, the understanding of its physical
content is difficult, which gives rise to controversy and a
clash of opinions [12, 18, 38, 42]. We believe that a source of
these psychological difficulties lies in the declarative mode of
STR construction which A Einstein called fundamental.

3.1.1 A Einstein's classification. H PoincareÂ 's widely known
refutation of the declarative method for constructing physical
theories [42, 43] had no serious consequence. This does not
mean that A Einstein, the main progenitor of the declarative
or fundamental STRmethod, did not consider it to be the sole
possible approach (see Ref. [69], pp. 247 ± 248):

``In physics, a few types of theories are distinguished.
Most of them are constructive, i.e. their objective is to build
up a picture of complicated phenomena, proceeding from
certain relatively simple propositions...

When we say that we understand this or that group of
natural phenomena, it means that we have developed a
constructive theory embracing the group of phenomena.
Apart from this most important class of theories, there are
other theories which we shall call fundamental. They use an
analytical method instead of a synthetic one. The starting
point and the basis of these theories are not hypothetical
theses but empirically found general properties of phenomena
and principles fromwhichmathematically formulated criteria
of universal applicability arise...

The advantages of constructive theories include complete-
ness, flexibility, and lucidity; those of fundamental theories
are their logical perfection and reliability of initial proposi-
tions. The theory of relativity belongs to the class of
fundamental theories. To understand it, one needs to be
acquainted with its fundamental principles.''

By listing the advantages of each class of theories,
A Einstein thus implicitly indicated the main drawback of
the fundamental methodology he used in STR Ð it does not
give the understanding of that `group of natural phenomena'
which it embraces. It follows from the above quotation that
such understanding cannot be achieved without a construc-
tive theory of relativism. In other words, the inverse thesis
would be more to the point for all practical purposes, namely,
the understanding of the nature of relativism is an indis-
pensable prerequisite for building up a constructive theory.

It may be concluded that, although A Einstein realized
the importance of further clarification of the nature of
relativistic concepts and the advisability of transition from
fundamental to constructive methodology, there was no
experimental foundation for such a transition in his time.
It was justly remarked by H Bondi [12] that a new impetus
to the revision of relativistic concepts was given by the
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progress in radar technology for estimating distances from
time measurements.

3.1.2 Variants of generalization. A number of fundamental
STR versions initiated by the first work of A Einstein are
actually different variants of derivation of Lorentz trans-
formations for the case of isotropic light propagation. We do
not share the opinion of H Bondi [12] that knowledge and
understanding of the Lorentz transformation is not necessary
to understand STR. It will be shown that his approach is
incomplete. Moreover, we would like to emphasize that
knowledge of the traditional form of the Lorentz trans-
formation is insufficient for understanding STR.

More general analogues of the Lorentz transformation are
useful to better understand STR, in particular, those taking into
account the anisotropic case of light propagation.

It may be argued that such generalization is not essential
for the traditional aspects of practical STR application
because real physical space is isotropic. However, general-
ization of STR is certainly indispensable in the comparative
evaluation of procedures for testing light propagation
anisotropy in other media.

Qu e s t i o n 3.1. Is it possible to generalize STR without
taking into account anisotropic light propagation?

It turns out that this question has a positive answer. In
addition, it is possible to demonstrate the existence of one
more aspect of STR generalization, arising from the anhar-
monicity of light beams and reference system axes.

In the forthcoming sections, we shall consider an algebraic
scheme for the specification of STR invariants and introduce
a generalized postulate taking into account not only aniso-
tropic light propagation but also anharmonicity of light rays,
in order to obtain a general model of SRT. However, before
constructing generalized relativistic models, we deem it
appropriate to compare the various methods used to derive
Lorentz transformations and thus, on the one hand, to recall
the history of development of major notions and, on the other
hand, to introduce the necessary algebraic formalism using
known examples.

3.2 Reference system algebra
This section is an auxiliary one. It is designed to characterize
agreed opinions about the definition of base chronogeometric
matrices.

3.2.1 2-dimensional world. Let a fixed standard of length be in
the absolute frame of reference (AFR), and amobile one in the
relative frame of reference (RFR)which travels with respect to
the AFR at a constant velocity v < c, where c is the speed of
light. Moreover, either frame of reference (FR) must contain
a fixed and free-going clock, respectively, i.e. an intrinsic time
etalon. In this case, it is natural to initially postulate the
following:

Cond i t i o n o f e t a l on i n e r t i a l e qu i v a l e n c e. In
AFR and RFR, etalon rods are of the same length l � 1, and
etalon clocks have equal periods T � 1.

However, an unsubstantiated postulate of such `equality'
is to no purpose unless certain procedural and other rules are
indicated to support the validity of its length and time etalons.

It is convenient to divorce from the very beginning the
problems of physical realizability of certainmetric procedures
from problems of their mathematical description and geo-
metric representability. For example, the physical solution of
the synchronization problem for differently located clocks is

possible by different methods which saves us the trouble of
repeating the descriptions of H PoincareÂ and A Einstein (see
Refs [42, 43, 69]). Geometrically, this problem is resolved by
setting axes of simultaneous events, i.e. straight lines parallel
to the space axes of AFR and RFR. Then, the time axis of
AFR is the world line of an `absolutely fixed observer', while
the time axis of RFR is the world line of a `relatively fixed
observer', that is one stationary in the RFR and moving with
respect to AFR at the constant speed of the RFR's motion.

No t e 3.1. It would be natural from the very beginning to
consider relativistic problems in a 4-dimensional world (4-
world). However, inertial movements are always 1-dimen-
sional movements along a certain space straight line. There-
fore, by taking such a straight line as the RFR axis, it is
possible to save on writing unessential intercoordinate
relations and initially narrow the geometric description to
the 2-world, while attaining greater simplicity and better
visualization without losing the necessary generality. Such
planimetric narrowing is used below.

3.2.2 Base matrices. By analogy with the definitions of SFA
and SMA (see Section 6.4), we shall assume that 2-world
events in AFR give rise to a certain distinguished flat
manifold of events X � fx � �t; x� 0 jEg containing the
`standpoint of a fixed observer', while 2-world events in
RFR form another plane manifold of events Y �
fy � �t; y� 0 jBg, i.e. the world of the `standpoints of a
moving observer'. Events x and y of different FRs are
referred to as equivalent if they are related by one of the
conditions

x � By , y � Ax ; �3:1�
where A and B are mutually inverse RFR bases compatible
with AFR: B � B�v�, B�0� � E.

The general formal description of RFR bases (3.1) is more
convenient to represent kinematically, i.e. in polar coordi-
nates. However, the Cartesian vectors b1 � �t1; x1� 0 and
b2 � �t2; x2� 0 admit different variants of the choice of polar
representations:

(1) both axes are assumed to be timelike: b1 � t1�1; v1� 0,
b2 � t2�1; v2� 0;

(2) both axes are assumed to be spacelike: b1 �
x1�1=v1; 1� 0, b2 � x2�1=v2; 1� 0;

(3) the first axis is assumed to be timelike, and the second
one spacelike.

In the forthcoming discussion, variant (3) of kinematic
definition of AFR and RFR bases is most frequently used
(exception is made for the reviews of literature sources where
the authors' mathematical notation is preserved if possible).
With variant (3) (see Fig. 10a), etalon vectors of the time (b1)
and space (b2) axes contain gauge coefficients tb (of `local
time') and xb (`of local distance'), velocity of travel v1 � v,
and parameter v2 having the sense of velocity:

b1 � tb�1; v1� 0 � tbv1 ; b2 � xb

�
1

v2
; 1

�0
� xbv2 :

Therefore, in the general matrix definition of basis

B � �b1; b2� � V�v1; v2�D�tb; xb� �3:2�

it is possible to distinguish matrices of two pairs of
independent parameters having different physical content:

V�v1; v2� � E� �v1e2; vÿ12 e1� ; D�tb; xb� � diag�tb; xb� :
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Distinguishing events of intersection of RFR etalon
boundaries with AFR axes, denoted as tee1 and xee2
(Fig. 10b), and solving equations

b1 � tee1 � l1b2 ; b2 � l2b1 � xee2

with undetermined multipliers l1 and l2 brings about
l1 � v1=vb, l2 � vb=v2 and the base matrix

B � jVjÿ1D�te; xe�V
�
v1
ve
;
v2
ve

�
; �3:3�

where ve � xe=te � vb � xb=tb. In other words, the gauge
velocities are equal, the same as the ratios te=tb �
xe=xb � 1ÿ v1=v2 � jVj os scale quantities.

3.2.3 Basis functions. If a certain RFR is given and only its
velocity v with respect to the AFR is known, it is under-
standable that such minimal information allows identifica-
tion of only the `angle' of the local time axis, v1 � v, in the
description of the B-basis. The entire base triple of RFR
parameters ftb; xb; v2g remains undefined, i.e. free. This
means that the libernetic reserve for extension of the

definition of RFR is three: lib �B� � 3. In order to reduce
the parametric indefiniteness of an arbitrary RFR, it is
necessary to use a principle or a postulate, or to proceed
from the properties of instrumental procedures.

Therefore, the principle- or postulate-based analytical
reconstruction of RFR can be reduced to the identification
of a set of three parameters B � ftb; xb; v2g defined as basis
functions of the inertial velocity v1, which satisfy conditions
of compatibility with the AFR:

B � �tb�v�; xb�v�; v2�v� j v1 � v ; tb�0� � xb�0� � 1;

v2�0� � 1
	
: �3:4�

Examp l e 3.1. Let us distinguish basis functions (3.4)
and matrix bases they define for three classical metric
geometries:

GG : B � f1; 1;1g ; B�v� � E� vE21 ; �3:5a�
MG : B � fgÿ; gÿ; vÿ1g ; B�v� � gÿ�E� vI� ; �3:5b�
EG : B � fg�; g�;ÿvÿ1g ; B�v� � g��E� vJ� ; �3:5c�

where g2� � 1=�1� v2�. Velocity v-parametrization has a
physical sense in Galilean geometry (GG) and Minkowskian
geometry (MG) but is not normally used in Euclidean
geometry (EG) because the space-time version of the latter is
lacking. When EG is defined for spatial coordinates:

t! x1 ; x! x2 ) x � �x1; x2� 0 ;

parametrization in terms of velocity v � x=t has the sense of
projective parametrization, v � x2=x1.

Each of the three models, GG,MG, and EG, admits of an
infinite number of parametrizations. It is worthwhile distin-
guishing additive parametrizations, when the multiplication
of base matrices is equivalent to the summation of para-
meters:

B�a1�B�a2� � B�a1 � a2� : �3:6�
This condition implies the possibility of representing the basis
in the form of a matrix exponent. Indeed, all `good'
geometries possess this property [see Eqns (6.8) ± (6.10) in
Appendix]. However, parametrization with respect to velo-
city is additive only in Galilean geometry. Therefore, it is
possible to speak about `summation of velocities' only in this
geometry.^

3.3 Review of known methods
In this section, we compare different methods for the
derivation of Lorentz transformations. Before passing to
new generalized models of relativism, it is worth considering
the merits and demerits of the methods which have stood `the
test of time'.

3.3.1 Procedural method of A Einstein. In his first work
published in 1905 [42], A Einstein used the procedural
method for the derivation of Lorentz transformations. The
method included comparative analysis of elementary events
of light reflection from the ends of fixed and moving etalon
rods, and the events of return of the reflected beams. In other
words, the events of light reflection and return gave rise to a
pair of equivalent events necessary to find the RFR basis.

E i n s t e i n ' s p r o c edu r e. `A light ray is sent' from the
common origin of AFR and RFR in the direction of motion,

y
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Figure 10.Definition of space-time bases in AFR and RFR: (a) canonical

variant, (b) alternative variant of etalon choice.
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to be reflected from the front ends of the rods and come back
to the origin.

The test procedure in AFR is depicted in Fig. 11a by a
forward light beam c1 � t1�1; c� 0 (from the initiation event o
to the reflection event x10) and a backward light beam
c2 � t2�1;ÿc� 0 (from the reflection event x10 to the return
event x20). Test events X0 � �x10; x20� are formed with the
participation of boundary conditions defined by the world
lines of the front and back ends of the rod:

L0 : x � te1 ; L1 : x � te1 � L0e2 :

The boundary conditions being taken into account, we arrive
at the equations

x10 � �T1;L0� 0 � c1 � �t1; ct1� 0 ;
x20 � �T2; 0� 0 � c1 � c2 �

ÿ
t1 � t2; �t1 ÿ t2�c

�0
;

from which the representation of test events in terms of the
known quantities only can be found:

x10 �
�
L0

c
; L0

�0
; x20 �

�
2L0

c
; 0

�0
:

In Fig. 11a illustrating this procedure, the forward and
backward light beams form an `isosceles' triangle X 2

3 �
fo; x10; x20g the midbase of which is coincident with the
reflection event. This property of the AFR test was assumed
by A Einstein to be the general simultaneity criterion suitable
for all inertial FRs.

For an observer in AFR, themain new property of the test
performed in RFR is a change of boundary conditions which
determine new parallel straight lines

L0 : x � tv ; L1 : x � tv� Le2 ;

where v � �1; v� 0 and L is the a priori unknown rod length
determined (see Fig. 11b) from the point of intersection of the
space ordinate and the straight line L1 (such an intersection
can be tentatively interpreted as an `instantaneous photo-
graph' of a moving rod, taken at the initial instant of time in
the AFR). Using the new boundary conditions

x1 � �T1;L� cT1� 0 � c1 � �t1; ct1� 0;
x2 � �T2; vT1� 0 � c1 � c2 �

ÿ
t1 � t2; �t1 ÿ t2�c

�0
;

it is possible to identify new test events depending on the
relative velocity of motion v:

x1 � L�cÿ v�ÿ1c ; x2 � 2g2Lcÿ1v ;

where c � �1; c� 0, and g2 � �1ÿ v2=c2�ÿ1. PCSL ismanifested
in the fact that an observer in RFR considers his test to be
identical with the AFR test (3.7), Y � X0 � �x10; x20�, while
an observer in AFR interprets matrix Y as matrix X �
�x1; x2� � BY; hence, one finds

B � XYÿ1 � rL�v; c� ;

where L�v; c� � g�E� v�e2; cÿ2e1�� is the Lorentz matrix, and
r � gL=L0 is the additional multiplier containing an
unknown scale parameter L.

A Einstein resolves the problem of supplementing a
definition of the `redundant' multiplier r based on the factor
symmetry condition. According to this condition, the multi-
pliers of the direct and inverse transformations must coincide
�r � rÿ1�, which is feasible if r � 1. Then, the basis to be
found

B�v� � L�v; c� ; jBj � 1 �3:7�

is equivalent to the unimodular Lorentz transformation.
Therefore, the mathematical sense of elimination of a

`redundant' multiplier consists in obtaining the unimodular
basis. An essential additional property of such a basis is that
the scale quantities of length L and time T, apparent to an
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Figure 11. Ray triangles of test procedures of A Einstein (a, b), and
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observer in AFR (Fig. 11b), prove to be dependent on the
RFR velocity:

r � 1 ) L � Tc � L0

g
� L0

�
1ÿ v

2

c2

�1=2

; �3:8�

while the relations between scale parameters in AFR and
RFR, L=T � L0=T0 � c, ensue from formulas (3.3). It
follows from formula (3.8) that length L and time T scale
quantities decrease with increasing velocity v. These rela-
tionships are termed the effects of relativistic shrinkage of
length and time dilation.

No t e 3.2. In the works of H Lorentz [42, pp. 67 ± 87] and
H PoincareÂ [42, pp. 90 ± 93], the initial equations of inter-
coordinate transformations also contain an arbitrary multi-
plier (denoted in the cited works by the letter l) which is
further considered to be a unit one by reason of necessary
unimodularity.

Con c l u s i on 3.1. The PCSL-based procedural method
does not fully determine the RFR basis because a `redundant'
parameter r in the form of the common multiplier of Lorentz
transformation remains unknown and requires additional
considerations to be defined completely.

3.3.2 Invariant ray technique. In a review paper published in
1917 [69, pp. 223 ± 227], Einstein no longer analyzed specific
features of the procedural method. He used instead another
postulate-based method for the derivation of Lorentz trans-
formations, the so-called invariant ray technique.

In this technique, light beams C1 and C2 are supposed to
emanate from the common origin of the AFR andRFR in the
negative and positive directions. In accord with PCSL, these
rays have equal (`invariant') velocities �c in either FR. In
other words, they are described by equations

C1: x� ct � 0 , y� ct � 0 ;

C2: xÿ ct � 0 , yÿ ct � 0 :

This means that event x � �t; x� 0 incidental to a beam in the
AFR is converted, upon transition to the RFR, into an
equivalent event y � �t; y� 0 which remains incidental to the
same beam. A Einstein expresses this property of isotropic
beam invariance in the form of two equalities having two
undetermined coefficients m and l:

x� ct � m�y� ct� ; xÿ ct � l�yÿ ct� : �3:9�

After an introduction of the matrix C � �ÿcFe; e�, D �
diag �m; l�, these equalities are rewritten as

Cx � DCy :

Then, in agreement with the general definition of equivalence,
we obtain

x � By ; B � Cÿ1DC :

Taking into consideration the kinematic representation of
basis (3.2), the gauge parameters are found as

tb � xb � d� � l� m
2

:

Subsequent simple transformations yield the matrix

B � rL�v; c� ( r � d�
g
:

In order to solve the problem of the `redundant' multi-
plier, A Einstein introduced the `instantaneous photograph'
method analogous to the base representation (3.3) where
gauge parameters are substituted by scale axis fragments. A
fragment of length xe � rg is called the instantaneous
photograph of the RFR etalon rod, taken by an observer in
the AFR.However, if a similar `photo' of the analogous AFR
rod is taken by an observer in the RFR, the desired length is
ye � g=r. Now, the relativity principle is formulated as the
equality among relative scales of the standards of length:
xe � ye. Then, r � 1, i.e. the Lorentz basis is again obtained
for RFR.

Con c l u s i on 3.2. The invariant ray technique does not
fully determine the RFR basis.

3.3.3 k-Coefficient method of H Bondi. The k-coefficient
method was proposed by H Bondi [12] as an alternative way
to expound the STR. It actually reflects one of the properties
of Lorentz transformation and represents a variant of
parametrization of the RRF timelike axis.

Let us consider the world line of inertial motionL1: x � vt
and event x0 of the initial test signal (e.g. light) emission in
AFRwith a time delay T. Then, the event x0 � Te1 (Fig. 11b)
is the initial point of the beam

C1: x � x0 � t�1; c� 0 ;

which traverses the line L1, on condition v < c, at the world
point

x1 � �t1; x1� 0 � C1\L1 :

In this case, the two determining conditions of AFR

x1 2 L1 ) x1 � vt1 ; x1 2 C1 ) x1 � c�t1 ÿ T�

are used to explicitly calculate the time necessary for the test
signal to reach the line L1:

t1 � T

1ÿ v=c : �3:10�

Que s t i o n 3.2. How the equivalent time of this event in
RFR can be determined?

To answer this question, H Bondi proposed using the
following simple line of reasoning [12]. Let t1 be the desired
time at the clock in RFR and t1 � kT, where k is an unknown
coefficient. If, in addition, the first incidence event is identical
with the event of reflection, the backward signal will come
back to the AFR origin at the instant of time t2 � k2T.
However, taking into consideration the isotropic conditions
of signal propagation and incidence/reflection time, t1 can be
expressed as one-half the sum of the emission time t0 and
recurrence time t2:

t1 � t0 � t2
2
� �1� k2�T

2
:

Comparison of this result with Eqn (3.10) allows the
unknown coefficient to be expressed through the velocity
ratio and vice versa:

k2 � 1� v=c
1ÿ v=c ,

v

c
� k2 ÿ 1

k2 � 1
:
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Hence, the k-coefficient can be used instead of the velocity-
dependent parameter to characterize inertial motion.

The etalon vector b1 � �b11; b21� 0 of the timelike RFRaxis
and the incidence/reflection event x1 are collinear:
x1 � kT b1.

This allows, after simple transformations, k-parametriza-
tion of this etalon to be performed:

b1 �
�
k� kÿ1

2
;
c�kÿ kÿ1�

2

�0
:

The introduction of additional a-parametrization opens the
possibility to express the etalon vector b1 through hyperbolic
functions of the a-angle :

k � ea , v

c
� tanh a , b1 � �cosh a; c sinh a� 0:

Con c l u s i on 3.3. The k-coefficient methodmay be used
to fully reconstruct the time standard in the RFRbut does not
resolve the problem of the standard of length; additional ideas
are necessary for the purpose.

3.3.4 Invariant quadratic form method. Examining the group
properties of Lorentz transformation, H PoincareÂ distinguis-
hes invariants of this group, the list of which includes, if
dynamic problems are considered, different forms of coordi-
nates and velocities (see Ref. [42, pp. 154 ± 156]). However,
the primary one is the hyperbolic-type quadratic form
(`interval').

The inverse geometric approach ofHMinkowski (seeRef.
[42, pp. 167 ± 180]) is based on the primary postulate of
quadratic form invariance:

ÿt 2 � x2 � ÿt2 � y2 ) B 0FB � F ; �3:11�

which ensures a hyperbolic metric of `unified' space-time or
the STR world. In this approach, the Lorentz group is a
requisite consequence of invariance of the determining
quadratic form (3.11) and the corresponding matrix equa-
tion (see A.33). Bearing in mind Minkowskian geometry
consistent with this method and described in Appendix (see
Section 6.8 and Fig. 18c), it is possible to draw the following:

Con c l u s i on 3.4. The method of invariant quadratic
form provides a complete definition of the base invariant
system in the RFR.

3.4 Generalized models
The attitudes to various declarative methods for the con-
struction of relativistic kinematics differ significantly. In
recent years, some authors have criticized them, while others
advocated their use. We think that each method described in
the previous sections has its merits and demerits:
� the invariant quadratic form method allows us to

directly obtain a complete BIS, hence the fundamental
`space-time unity' concept is framed;
� the procedural method and invariant ray technique

provide a 2-stage approach: firstly, the Lorentz basis is
determined to within an arbitrary common multiplier;
secondly, the definition of the multiplier is extended with the
basis unimodularity condition.

Comparison of different methods for the derivation of
Lorentz basis has useful corollaries:

Co r o l l a r y 3.1. The conditions of common basis reduc-
tion, defined by PCSL and the physical principle of relativity

(PPR), are procedurally independent and represent different
invariants of an equivalent set of BIS;

Co r o l l a r y 3.2. Because PPR is used for the reduction of
a single `redundant' parameter, PCSL implicitly substitutes two
invariants, while PPR only one.

Qu e s t i o n 3.3. Which two BIS invariants are implicitly
represented by PCSL?

The formulation of PCSL needs generalization if the
answer to this question is to be of general character.
Evidently, the first step to the generalization should consist
in the introduction of anisotropy.

3.4.1 Anisotropic version. In the first method of Einstein and
in Bondi's method, the property of isotropic propagation of
the test signal is essentially used because the signal reflection
time is assessed by dividing in half the total propagation time
in the `forward and backward' directions. An attempt to
`generalize' this method of evaluation of synchronous events
to the anisotropic case encounters the question: how can it be
done? A simple answer is obtained if two synchronous signals
are sent in two different directions at a time, instead of
sending one signal (to be subsequently reflected) in one
direction. Then, in an isotropic situation, both signals
simultaneously reach equally remote boundaries. In the
anisotropic case, the distances must be set proportional to
the propagation velocities of the signals to ensure that they
reach their destinations at the same time. In the present
section, we use the invariant ray technique as described by
K Lanczos [36], in our modification for the anisotropic case.

Let the equivalent events x and y, x � By, be incidental to
the light rays emanating from the common origin of AFR and
RFR. Then, in agreement with PCSL, one finds

x � cit , y � cit ; i � 1; 2 : �3:12�
The substitution of definitions of coordinates x and t from the
general base equivalence condition into the first equality
(3.12) yields two equations for two rays

C1: x � c1t! b21t� b22y � c1�b11t� b12y� ;
C2: x � c2t! b21t� b22y � c2�b11t� b12y� :

Taking into account the second equality (3.12) permits us to
rewrite these equations in the `coordinate-free' manner. At
the same time, the introduction of matrices

C � �c1e1 � c2e2;ÿe� ; D � diag �c1; c2�

makes it possible to represent the transformed scalar
equations as

Cb1 � ÿDCb2 , b2 � Ab1 ; A � ÿCÿ1Dÿ1C :

Hence, the base matrix B has the following structure

B � �b;Ab� � tb�v;Av� � tb�E� vA� ; �3:13�

where A � �e2;ÿ�c1c2�ÿ1e1 ÿ �cÿ11 � cÿ12 �e2� is the matrix of
linear relation of base vectors, and the base vector b �
b1 � tb�1; v� 0 � tbv contains an arbitrary gauge parameter tb
the square of which is found from the unimodularity
condition

t 2b �
1

�1ÿ v=c1��1ÿ v=c2� :

1026 V V Smolyaninov Physics ±Uspekhi 43 (10)



With such a normalization, the etalons of base vectors b1 and
b2 are represented in the forms

B1:

�
tÿ x

c1

��
tÿ x

c2

�
� 1 ; B2: �c1tÿ x��c2tÿ x� � 1 ;

�3:14�

while the axes correspondence condition (or orientational
invariant) is

OI :
v2
c2
� c1
v1
� 1� c1

c2
: �3:15�

Con c l u s i on 3.5. The invariant ray technique allows us
to construct an anisotropic STR model and define a more
general system of base invariants.

3.4.2 Generalized postulate. The initial invariant ray techni-
que of Einstein [see Eqn (3.9)] involves only one constant c
which characterizes the isotropic velocity of light. In the
anisotropic modification of this method [see Eqn (3.12)],
there are two constants, c1 and c2, giving speeds of light in
different 1-dimensional directions. One more generalization
of anisotropic relativistic kinematics containing four con-
stants is feasible. Specifically, the speeds of light are
represented by constants c1 and c2 in AFR, and by s1 and s2
in RFR. The physical advisability of taking into considera-
tion such differences can be understood and explained only
with the use of the constructive approach (see Section 4.1.3).
Here, we simply declare (observing the rules of the funda-
mental approach):

Th e Gen e r a l i z e d PCSL. In the AFR, light propa-
gates in the negative and positive directions with different
velocities c1 and c2. In all the RFR, other constant velocities
are tested (s1 and s2, respectively).

Let us consider the relationship between two ray bases, an
AFR ray basis

C � �c1; c2� � V�c1; c2�D�tC; xC� � VCDC �3:16�

and a ray basisS definedwith respect to theRFRbasis (3.2) in
the form

S � �s1; s2� � V�s1; s2�D�tS; xS� � VSDS : �3:17�

Thus, the task of defining the metric RFR basis B is
reduced to the identification of two ray bases C and S:

C � BS ) B � CSÿ1 � VCDVÿ1S : �3:18�

In this case, a common diagonal matrix is naturally
distinguished as

D � DCD
ÿ1
S � D

�
tC
tS
;
xC
xS

�
� D�d1; d2� : �3:19�

Not e 3.3. Let us list major variants of polar parametriza-
tions of an arbitrary diagonal 2-matrix D � D�d1; d2�. In all
these variants, the `length' parameter r is defined as a module
of the product of elements or the `norm' of determinant,
r2 � jd1d2j � kDk:

�1� l2 � d2
d1

) D � rD�lÿ1; l� ;

�2� l � e a ) D � r�cosh aE� sinh aF� ;

�3� v
c
� tanh a ) D � rg

�
E� v

c
F

�
; gÿ2 � 1ÿ v

2

c2
;

�4� e a � w�v; c0; c1; c2� :

Variant (1) is the analogue of Bondi's k-parametrization;
with a wurf, variant (4) corresponds to Kleinian projective
parametrization; variants (2) and (3) are regular variants of
hyperbolic and kinematic parametrizations, respectively.

It is essential that in the general ray representation of the
RFR basis (3.18) variable gauge parameters are contained
only in the diagonal 2-matrixD. Because gauge parameters of
different ray bases enter matrix (3.19) in the form of ratios,
explicit partition of their respective contributions is impos-
sible. Therefore, we have proved:

Th e ma i n STR th eo r em. The RFR basis satisfying
PCSL has two free parameters, elements of the diagonal matrix
D, so that�

B�v1; v2; tb; xb� jPCSL
	 ) B � VCDVÿ1S : �3:20�

Coro l l a r y 3.3. The basis vectors of RFR (3.20) are
linearly dependent:

b2 � Ab1 ; A � ÿVCD�s2; s1�ÿ1Vÿ1C : �3:21�

P roo f. Let us distinguish, in the general description of
basis vectors

b1 � �1ÿ q�ÿ1
�
d1 ÿ d2s1

c2
; d1c1 ÿ d2s1

�0
;

b2 � �1ÿ q�ÿ1
�
ÿ d1
s2
� d2

c2
; d2 ÿ d1c1

s2

�0
;

vector d � �d1; d2� 0 and matrices D1 � D�1;ÿs1�,
D2 � D�ÿsÿ12 ; 1�:

b1 � jVSjÿ1VCD1d ; b2 � jVSjÿ1VCD2d : �3:22�

The exclusion of vector d yields the linear relation of two base
vectors: b2 � Ab1.^

Coro l l a r y 3.4. The PCSL geometry is the analogue of
double number geometry.

P r oo f. Let us introduce a hyperbolic parametrization
(see Note 3.3) and distinguish the normalized basis

B�a�Bÿ10 � X ;

where B0 � B�0�. Then, the matrix

X � r
r0
�cosh aE� sinh aN� �3:23�

is the matrix representation of a double number N �
VCFV

ÿ1
C , N2 � E.^

3.4.3 New system of invariants. Let us rewrite Eqn (3.20)
distinguishing the diagonal matrix

D � Vÿ1C BVS : �3:24�
Setting nondiagonal components of the triple product equal
to zero in the right-hand side, the two resultant interpara-
metric relations can be represented in the form of two
invariants, the projective invariant (PI) and the gauge
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invariant (CI):

PI :
�v1 ÿ c1�=�v1 ÿ c2�
�v2 ÿ c1�=�v2 ÿ c2� �

s1
s2
; �3:25a�

CI :
s1vb � v1 ÿ c1
s2vb � v1 ÿ c2

� c1s1
c2s2

; �3:25b�

where vb � xb=tb is the gauge velocity. In accordance with the
classical scheme, the transition to the one-parametric basis
B�v� can be effected using a unimodular invariant

UI : jBj � tbxb

�
1ÿ v1

v2

�
� 1 : �3:26�

Therefore, the PCSL-based generalized version of STR
can be characterized as the geometry of projective, gauge, and
unimodular invariants:

B�v� � �B�v1; v2; tb; xb� jPI;CI;UI
	
: �3:27�

Let us now compare a BIS variant of Minkowskian
geometry (A.36) with the new BIS variant (3.27). It is readily
apparent that the two specialized sets of invariants

BIS1 � fMI1;MI2;OIg; BIS2 � fPI;CI;UIg

are different even though they define essentially similar
geometries. The BIS2 set contains no metric invariants,
whereas the nonmetric invariant OI from BIS1 is analogous
to the projective invariant PI.

3.4.4 Ray basis. Let B be the RFR basis assigned with respect
to the ray basis VC, i.e. B � VCB. Then, the general
description of RFR in the ray basis is given by analogy with
Eqn (3.2):

B � ��b1; �b2� � V��v1; �v2�D� �tb; �xb� ;

and the diagonal representation (3.24) is defined in the
following way

B � Vÿ1C B � DVS ) D � BVÿ1S : �3:28�

Hence, for the nondiagonal elements, there are equalities

�vb � �xb
�tb
� ÿ �v2

s2
� ÿ �v1

s1
:

In other words, the projective invariant double ratio (3.25a) in
the ray basis is replaced by a simple ratio, and the formula of
the gauge invariant (3.25b) is also simplified:

PI :
�v1
�v2
� s1

s2
; CI : �vb � ÿ �v1

s1
: �3:29�

Similarly, the relations between velocities specified in diffe-
rent bases are expressed as simple ratios

�v1 � v1 ÿ c1
1ÿ v1=c2 ; �v2 � 1ÿ c1=v2

vÿ12 ÿ cÿ12

; �3:30�

while the diagonal elements of matrix D are defined as

d1 � �tb � tb�1ÿ v1=c2�
1ÿ c1=c2

; d2 � �xb � xb�1ÿ c1=v2�
1ÿ c1=c2

:

Not e 3.4. RFR bases B and B coincide in the case of
`exotic' degeneration of signal propagation anisotropy, when
c1 � 0 and c2 � 1, because VC � V�0;1� � E.

In common, invariants (3.29) show the linear relation
between base vectors:

�b1 � DS
�b2 ; DS � D�s2; s1� : �3:31�

This is an analogue of Corollary (3.3) in the ray basis [cf.
Eqn (3.21)].

No t e 3.5. Another variant of transition from wurf
(3.25a) to the linear relation between base vectors is possible
using the transformation (A.61). Comparison of the two
variants reveals a quasi-involutive property of matrix VCF,
as is readily apparent from the formula �VCF�2 � jVCjE.

Con c l u s i on 3.6. Two scalar invariants (3.25) and
(3.29) (projective and gauge) can be represented by one
vector condition of the linear relation between base vectors.

3.4.5 Harmonically isotropic world. The above-singled out
projective invariant PI, i.e. wurf (see Section 6.13)

q � w�v1; v2; c1; c2� � s1
s2
; �3:32�

characterizes the relative positions of four straight lines which
form a bundle of two line pairs. The first pair B � fv1; v2g in
the given order of velocity-specific arguments of wurf (3.32)
shows evidence of being `basic', and the second, C � fc1; c2g,
is the `ray' pair. In the general case, twomain variants of theB
and C relative location are conceivable [65]. Of physical
interest is the negative wurf: if q < 0, pairs B and C separate
each other.

A harmonic case of negative wurf q � ÿ1 is especially
interesting.

From the physical point of view, the harmonicity is
remarkable because

q � ÿ1 , s1 � s ; s2 � ÿs : �3:33�
In this case, the `relative ether' is tested as isotropic, in
accordance with Eqn (3.33), even if c1=c2 6� 1 (i.e. if the
`absolute ether' is anisotropic).

A classical variant of STR is represented by the case of
ether harmonic isotropy, when light propagates at the same
speed c in all directions and in all FR:

c1 � s1 � c ; c2 � s2 � ÿc : �3:34�
Then, formulas of the projective and gauge invariants
undergo further simplification to

PI : v1v2 � c2 ; CI : vb � 1 : �3:35�
It is concluded that the formal use of generalized PCSL

exposes:
Th e p r o j e c t i v e p r op e r t y o f RFR in STR. RFR

axes and light rays are in projective harmonic correspon-
dence.

Coming back to the anisotropic version of the Lanczos
method, it is easy to see that the derived nonmetric OI
invariant (3.15) is also projective, but only in the case when
s1 � c1, s2 � c2. PCSL invariants in this version can be
presented as

PI : w�v1; v2; c1; c2� � c1
c2
; CI : vb � 1ÿ

�
1

c1
� 1

c2

�
v1:

�3:36�
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Here, generally speaking, the projective invariant is anhar-
monic: q � c1=c2 6� ÿ1, and this case can be referred to as
anharmonicity of anisotropy.

The well-known review by W Pauli (see Ref. [41, pp. 44,
45]) lists groups of transformations of primary importance for
physics. It contains an interesting comment on the projective
group, relevant to the subject matter of our discussion:

``It played an important role in early research of
mathematicians on non-Euclidean geometry. It is not so
important for physicists.''

Con c l u s i on 3.7. Analysis of the system of generalized
PCSL invariants demonstrates the importance of the projec-
tive group for relativistic kinematics.

4. Wave clock

When we say that we understand one or another group of

natural phenomena, this means that we have built up a

constructive theory embracing this group of phenomena.

A Einstein

The development of the constructive aspect requires a
revision of the traditional clock concept which treats the
clock as a `black box' with a dial. If time-study in different
inertial systems is based on etalon movements, e.g. using an
optical chronometer (see below), then unification of this
procedure allows a chronogeometry to be constructed
proceeding from the property of a constant speed of light
rather than from a postulate. Moreover, it can be shown that
the choice of chronometer predetermines the choice of
chronogeometry because the latter is not absolute as H
Minkowski thought but relative (or procedure-dependent).
The use of a chronometer in which sound, instead of light,
plays the role of the etalon wave provides an acoustic model
of Minkowski chronogeometry in which the absolute
(limiting) velocity c is equal to the speed of sound in a given
medium. It is therefore clear, from the standpoint of the
constructive methodology, that the `absolutism' (hence,
`fatalism') of the fundamental method is due to the simple
fact that light and electromagnetic waves serve as the
principal etalon wave in many physical space-time measure-
ments.

Thus, the constructive theory of relativism does not
affect the mathematical structure of the fundamental
theory but changes the attitude to relativistic effects by
facilitating the understanding of their measuring nature. In
other words, our criticism of the fundamental approach
implies the denial of the `global space-time unity' concept
declared by H Minkowski in favor of the constructive
`instrumental unity' concept. An essential aspect of such a
change of paradigms consists in the possibility of consider-
ably expanding the sphere of applicability of relativistic
notions and concurrent increasing the diversity of chron-
ogeometries.

4.1 Langevin's clock
Attempts to rewrite the fundamentals of STR undertaken by
certain critically inclined physicists, such as H Bondi, are
based on quite correct preconditions [12]:

``Any quantity in physics is defined by that method which
is used tomeasure it. Therefore, time is what is measured with
a clock. There is no reason to think that all clocks, regardless
of their motion, will show one and the same time.''

However, these preconditions have received no further
constructive development (see above).

A broad view of the `clock problem' and its paradoxes
would require relativistic analysis of all known types of
clocks, such as the sun-dial, sand-glass, clepsydra, as well as
pendulum and atomic clocks. However, such comparative
analysis is lacking inmodern relativistic physics. This explains
why the analysis of procedures for the coordination of clocks
of different inertial observers is not based on a specific clock
type but has to rely on declarations which are in essence
consistent with Minkowskian geometry.

It may be argued that the lack of a relativistic theory of the
mechanical clock is not a result of omission or neglect on the
part of theorists. There is no doubt, however, that the reasons
for the absence of such a theory are poorly understood. The
thing is that the classical theories of the mechanical clock
proceed from the laws of classical mechanics, invariant with
respect to the Galilean transformation but not invariant with
respect to the Lorentz transformations. It is easy to see
considering the simple example of a mathematical pendulum
or the even simpler one of a linear oscillator containing only a
mass and an ideal spring.

Co r o l l a r y 4.1. There can be no universal relativistic
theory of the clock. It is therefore irrelevant to speak about an
`arbitrary clock' in the relativistic context.

We think that a relativistic theory is the theory of another,
`wave', clock, where the emphasis is laid on the propagation
of that `etalon wave' which is used for the purpose of
measuring. Indeed, the descriptions of relativistic effects
frequently mention special chronometers, e.g. Langevin's
clock (see Refs [11, 38, 62]).

L ang e v i n ' s c l o c k. A one-meter hard rod on the ends
of which a pair of mirrors are attached in a parallel
arrangement. A light pulse `ticks' between the mirrors and is
alternately reflected (without absorption losses) on either of
them.

Langevin's clock is actually a cyclic version of Einstein's
chronometric procedure (see Section 3.3.1). For this reason,
the `run' of Langevin's clock must agree with either a
fundamental or constructive relativistic theory.

Now, there is an opportunity for `procedural inversion' of
the theory, that is for using Langevin's clock both as a
chronometer and a ruler, instead of introducing fundamental
postulates. In other words, we may assume that all inertial
observers use this device as a navigational aid to ascertain
their position.

Qu e s t i o n 4.1.What are the consequences of Langevin's
clock's submission to Minkowski's chronogeometric laws?

It is evident that, with PCSL and the unimodularity
condition accepted from the very beginning, Langevin's
clock must be in concert with Minkowskian geometry. And
what if Einstein's strategy and PCSL are disregarded from the
outset?

Let us consider this opposite situation separately.

4.1.1 Ether hypothesis. When formulating generalized PCSL
in a previous section, we did not insist on the expediency of
accepting the ether hypothesis (see Section 3.4.2) because in
the framework of the fundamental (`postulate-based') relati-
vistic concept it is virtually unessential what is postulated,
either an ether which maintains the constant speed of light or
only the property of constant speed of light regardless of the
ether. The kinematic character of STR allows the propaga-
tion of light (electromagnetic) waves to be considered apart
from their physical aspects and to analyze the necessary and
sufficient conditions for the existence of relativistic effects
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from a purely geometric standpoint, as the invariant ray
problem. It follows from the comparative review of theoreti-
cal methods in Section 3 that the postulate-based methodo-
logy predominates in exposition and revision of STR, while
the first procedural method of A Einstein chiefly illustrates
the possibility to obtain, with this `experimental' approach,
the same results (if we proceed therewith from PCSL) as with
nonprocedural methods.

When passing to the constructive concept of relativism,
we have no alternatives besides solely procedural methods for
which the ether hypothesis is an indispensable component.
Denying the primary declaration of PCSL, it is necessary to
have a `material' substitute. Let us partition the major
ingredients of PCSL:

(P1) the speed of light is independent of the motion of the
source;

(P2) the speed of light is independent of the motion of the
detector.

It is proposition (P1) that is at the core of the ether
hypothesis, ether being understood as a light-carrying
medium. It reflects the materialistic orientation of the
classical (nonrelativistic) scientific methodology of physicists
who tried to overcome the metaphysical isolation of electro-
magnetic phenomena on the assumption that many other
processes (perhaps with the exception of gravitation) have
material carriers (heat, sound, nerve impulse, etc.). Generally
speaking, the ether hypothesis looks very natural in the
general physical context. But how it is treated is another
matter.

Qu e s t i o n 4.2. Is it necessary to refuse what it is possible
not to refuse? or the best plan to be followed is to refuse what
cannot be brought to light?

STR does not necessarily imply negation of the ether
hypothesis. On the contrary, it may help to first understand
the essence of proposition (P1) and thereafter decide whether
the kinematic means are sufficient to `enter' the ether's frame
of reference. To be able to examine constructive options, we
accept:

Th e e t h e r h ypo t h e s i s. A homogeneous light-carrying
medium does exist.

Now, proposition (P1)may be interpreted as ensuing from
the ether hypothesis. Let us see what other corollaries can be
derived from this hypothesis.

4.1.2 Optical chronometer. Both Einstein's procedure and the
method of Bondi use asymmetric variants of sending test
signals. Meanwhile, it would be more to the point to directly
introduce symmetric variants to be able to consider not the
triangles of three events but the parallelograms of four events,
matching AFR and RFR origins with the middle of the
chronometer rod (see below). The advantages of such
procedural symmetrization can be accounted for by a
known theorem of projective geometry which states that
four straight lines incidental to two diagonals and two sides
of the parallelogram are in harmonic correspondence.

Co r o l l a r y 4.2. The fact of distinguishing a light-beam
parallelogram provides direct geometric evidence of projective
invariance of RFR bases.

Had Einstein employed the symmetric variant of the test
procedure, he would not have had to introduce an additional
assumption that the axis of concurrent events passes through
the center of the base of the test event triangle because the
diagonals of a parallelogram are known to always intersect at
midpoints.

It is desirable to modify the construction of Langevin's
clock so that the light rays form a parallelogram, following a
single act of emission.

Op t i c a l c h r onome t e r (OC). A rod as long as 2L0 has
two mirrors attached to its ends and a pulsed light source and
two detectors (two photoelements) in the middle. Each
detector receives light pulses reflected on a homolateral arm.
A new flash is generated when two reflected signals are
recorded simultaneously.

The constructive approach differs from the fundamental
one mainly in that it uses the ether hypothesis rather than
PCSL as the initial determining condition, because this
hypothesis contains the necessary information about velo-
cities of light. In order to calculate OC clock periods, it is
sufficient to know the boundary and initial conditions, i.e. the
arm length L0 and the moment t � 0 of generation of the first
flash (d-pulse of light).

The initial elementary act of light passage from the OC
center to the equally remote mirrors and back forms a ray
parallelogram (Fig. 12a, b)

P � fo; c1; c2; c1 � c2g ; �4:1�
with vertices o (initiation event),

c1 � �t1; x1� 0 � tC�1; c1� 0; c2 � �t2; x2� 0 � xC�cÿ12 ; 1� 0

(events of reflection from the back and front mirrors), and
c1 � c2 (event of synchronous return).

AFR. In the case of isotropic ether �c2 � ÿc1 � c�, as in
Fig. 12a, the light reflection events are concurrent
�t1 � t2 � T0� and bilaterally symmetrical with respect to
the time axis: x2 � ÿx1 � L0. Therefore, the return event
falls on the time axis of AFR at moment 2T0, while
c1 � c2 � �2T0; 0� 0. In such a case, the ray parallelogram
(4.1) has a rhombus shape.

In analogy to the foregoing [see Eqn (3.16)], we represent a
pair of initial rays as a matrix

C � �c1; c2� � VCDC � V�ÿc; c�D�tC; xC� ;
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Figure 12. Ray parallelograms of the wave clock in AFR (a, c) and RFR

(b, d) in isotropic (a, b) and anisotropic (c, d) media.
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and the boundary conditions as a matrix

X � �x1; x2� �
ÿ�t1;ÿL0� 0; �t2;L0� 0

�
:

The solution of the boundary-value problem C � X yields a
gauge matrix DC:

C � X ) DC � diag

�
L0

c
; L0

�
: �4:2�

In this procedure, unlike that described previously [see
Eqn (3.18)], the vectors of half-diagonals of the ray parallelo-
gram first form a `parallelogram basis' P0 � �p10; p20� which
is related to the ray basis in the simple way:

c1 � p10 ÿ p20 ; c2 � p10 � p20 ) C � P0S ;

where an additional matrix

S � �s1; s2� � Eÿ J

is, on the one hand, the algebraic operator of the additive
relation between the ray and diagonal vectors but, on the
other hand, we have

S � V�ÿ1; 1�D�1; 1�

or the geometric basis of rays C, defined with respect to the
parallelogram basis.

This trivial situation is important for the introduction of
matrix symbols because it is a typical one, with the following
general cases being described in practically the same way.
Simple calculations give

P0 � CSÿ1 � �T0e1;L0e2� ; �4:3�

where T0 � L0=c. Thus, in the given simplest case, basis P0 is
collinear with the E-basis of AFR.

RFR. Because the variant with OC placed in the RFR
basis is described with respect to AFR, the beam trajectories
remain the same, in agreement with the ether hypothesis
(Fig. 12b). The altered boundary conditions are represented
now by the matrix

X � ÿ�t1;ÿL� vt1� 0; �t2;L� vt2� 0� ; �4:4�

and the solution of a new boundary problem leads to a new
gauge matrix

C � X ) DC � diag

�
L

c� v ;
L

1ÿ v=c
�
: �4:5�

In AFR, an elementary act of light passage from the
center of OC to equally remote mirrors and back forms a ray
parallelogram which is described, using vector notation, by
the above formula (4.1). However, the ray basis changes in
agreement with Eqn (4.5). As a result, the parallelogram basis
of RFR alters as well:

P � �p1; p2� � CSÿ1 : �4:6�

It is worthwhile to note that to an observer in RFR having his
own basis B, P will appear as P0. The algebraic conversion of
the `RFR-observer's standpoint' into the `AFR-observer's
standpoint' is achieved by the simple substitution of the

B-basis for the E-basis. Indeed, the replacement of vectors e1
and e2 in matrix (4.3) by vectors b1 and b2 provides the
description of basis (4.6) with respect to basis B:

P � �T0b1;L0b2� � �T0Be1;L0Be2�
� B�T0e1;L0e2� � BP0 : �4:7�

Therefore, theRFRbasis to be found is expressed through the
parallelogram bases:

B � PPÿ10 � rL�v; c� ; �4:8�

where r � gL=L0 is the same `redundant' multiplier that
occurs in the fundamental version of STR as well, and
L�v; c� is the basis of the Lorentz transformation [see Eqn
(3.7)]. In other words, we have obtained the old formula by a
new method. The most important aspect of this approach is
that it does not require PCSL to be applied at the very
beginning but is based on the ether hypothesis and symmetric
construction of the optochronometer. It therefore provides
the possibility of revising the `space-time unity' problem.

Suppose that many independent inertial observers carry
clocks, including personal OCs, which run variously because
their constructions differ. Shall we then treat the OC as being
essentially different from other types of clocks and the only
device that shows `true time'? We do not think so (see
Conclusions).

Con c l u s i on 4.1. Relativistic chronogeometry in a
light-carrying medium is a consequence of the choice of the
wave clock model.

4.1.3 Procedural isomorphism. The ray parallelogram techni-
que provides an opportunity to visualize psychological
problems arising from the transition to the anisotropic ether
model. In the fundamental version of STR, these problems
are inapparent only when the invariant ray technique is used.
This explains why we took advantage of this method when
making generalizations. In the construction version, however,
procedural methods are most extensively used. Here, the
difficulty of understanding is related to the parallelogram
basis of AFR, the diagonals of which are not collinear with
AFR axes. For this reason, the description of RFR poses the
problem of the choice of the principle underlying the
construction of the RFR basis. This problem can be resolved
by generalizing the procedure for the coordination of the
standpoints of different observers to the vector structure of
parallelogram bases, described above in connection with the
derivation of formula (4.8) from Eqn (4.6). Ray parallelo-
gram is a version of test procedure designed to elucidate the
chronogeometric properties of a wave clock. It is in this sense
that we formulate the following:

P r i n c i p l e o f p r o c edu r a l i s omo rph i sm (PPI).
An arbitrary RFR is procedurally equivalent to AFR if the
spatio-temporal description of the test is geometrically
expressed as the replacement of AFR E-basis by B-basis of
RFR.

The previous description of OC parallelogram bases
through Eqn (4.1) contains vector and matrix formulas
which are also valid for an anisotropic ether. The solution of
the same boundary problems without an additional isotropy
condition brings about

C � X ) DC � diag

�
L

c1 � v ;
L

1ÿ v=c2

�
: �4:9�
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Hence, for AFR (Fig. 12c) at v � 0, matrix C0 and matrix

P0 � C0S
ÿ1 � �t�e1; tÿe1 � L0e2� ; �4:10�

where

t� � t2 � t1
2
� L0

c�
; tÿ � t2 ÿ t1

2
� L0

cÿ
;

cÿ1� �
cÿ12 ÿ cÿ11

2
; cÿ1ÿ �

cÿ12 � cÿ11

2
;

can be found at first.
Thereafter, matrix C and matrix

P � CSÿ1 � �t�b1; tÿb1 � L0b2� � BP0 �4:11�

are found for RFR, when v 6� 0 (Fig. 12d). Hence, the metric
basis of an arbitrary RFR is given by

B � PPÿ10 � rP0H�a�Pÿ10 : �4:12�

The RFR basis thus obtained is the analogue of the
anisotropic version of the Lanczosmethod (see Section 3.4.1).

Con c l u s i on 4.2. We have obtained a procedural-
instrumental definition of chronogeometry which is identical
to Minkowskian geometry under the unimodularity condi-
tion r � 1. To achieve this goal, we used the ether hypothesis
for the determination of ray bases in AFR and RFR, and the
principle of procedural isomorphism for the determination of
the relationship between parallelogram and metric bases.

4.1.4 Acoustic chronometer. Neither the type of the wave
source (e.g. light or sound) nor the type of the medium in
which the waves travel (e.g. air, water, etc. for the sound) is
actually essential for the described wave clock model (optical
chronometer, OC). What is really needed is that each clock
type associated with a specific wave variety be defined
independently and the medium regarded as infinite. Such
autonomy is crucial for understanding the necessity of a self-
contained definition of wave chronogeometry.

The known contrapositions of physical properties of light
and sound are possible only because acoustic wave properties
can be investigated based on visual information or by using
light and electromagnetic waves, the velocity of which ismuch
higher than that of sound waves. The properties of electro-
magnetic waves can be characterized only by studying
electromagnetic waves themselves. However, a conscious
refusal to employ visual criteria and electromagnetic waves
in a study of sound properties (that is, to admit the use of only
acoustic instruments and techniques) inevitably leads to the
concepts of acoustic relativism, specifically to the postulates
of a constant speed of sound.

This approach is easier to understand based on the `model
of the development of blind mankind', that is humans
enjoying all organs of sense besides vision. What kind of
physics would we have in such a situation? Certainly, we
would consider sound to be the fastest signal and use acoustic
radars instead of modern electromagnetic sensors for the
same purpose. In other words, we would use the same
principle of spatial orientation to which the blind have to
resort. But even for `mankind with eyes to see', it is useful to
have an idea of:

Th e a c ou s t i c c h r onome t e r (AC). The AC differs
from OC in that it contains a pulsed sound source and

acoustic baffles replacing mirrors; it also uses an acoustic
medium instead of a `light-carrying' one.

The AC theory will be described using the same formulas
which have been derived above for OC, on the assumption
that constants c1 and c2 are the velocities of sound for the
anisotropic model.

Of course, it is not difficult, with the experience gained in
visual studies, to design experiments for examining `effects of
entrainment of air'. For example, a pair of ACs can be placed
inside and outside a moving railway carriage or aircraft, or
`ticks' of two ACs can be recorded in synchrony. In such
cases, the experimenter knows a priori where and how the
medium is entrained. However, such experiments performed
in isolation fail to reveal `air entrainment effects'.

It is important to understand that the effects of entrain-
ment of the gas medium are immaterial for the internal
geometry of relativism associated with a given type of etalon
wave:

if one and the same velocity of the etalon wave is recorded in
different RFRs moving relative to each other, it is unessential
whether additional inertial movements of the medium due to the
`entrainment effect' occur or not.

Therefore, when the interface between the entrained and
stationary media is impossible to create to keep records
locally and simultaneously, it is likewise impossible to
demonstrate the presence of a medium in kinematic experi-
ments with a single type of etalon wave.

4.1.5 Mechanical chronometer. A formal transition from
Minkowskian geometry to Galilean geometry (GG) is
normally achieved as a limiting transition when the speed of
isotropically propagating light infinitely increases. Indeed, if
the `constant speed of light' understood as a formal
mathematical parameter grows infinitely, then the Lorentz
matrixL�v; c� [see Eqn (3.7)] undergoes transformation to the
Galilean matrix G�v�:

L�v; c�c!1 ! G�v� � E� vE21 : �4:13�

From the mathematical point of view, such a limiting
transition looks faultless but physically it leads to the
interpretation of GG as a chronogeometry of infinitely fast
or instantaneous interactions. Proceeding from the physical
postulate of the absence of instantaneous interactions, the
limiting interpretation of GG (4.13) ranks it as a fictive model
of spatio-temporal relationships.

We think it more relevant to define GG based on other
characteristics of inertial movements unrelated directly to the
wave properties of light propagation. In order to clarify an
alternative concept, it is worthwhile to examine:

Th e me chan i c a l c h r onome t e r (MC). A 2L0-long
rod carries two `machine guns' mounted on its middle part
and firing at `material points' in positive and negative
directions. Ideally elastic screens are attached to the ends of
the rod.

We confine ourselves to an isotropic version: the velocities
of material points in AFR are c2 � ÿc1 � c. Using a test
procedure analogous to that for OC, we obtain for a
stationary MC version a similar `ray' parallelogram or
parallelogram of material point trajectories described by the
matrix equality

C0 � P0S ( C0 � V�ÿc; c�D
�
L0

c
; L0

�
; P0 � D

�
L0

c
; L0

�
:
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If the MC travels at a velocity v, the material point
velocities in negative and positive directions can be deter-
mined in the usual way, following known mechanical laws
(Fig. 13a):

c1 � ÿc� v ; c2 � c� v : �4:14�

Hence, the ray matrix takes the form

C � V�c1; c2�D�tc; xc� � V�c1; c2�D
�
L

c
; L� Lv

c

�
;

in which scale parameters are completely defined by the
boundary conditions (4.4). Furthermore, by analogy with
Eqn (4.8), the metric basis for RFR of MC is found as

B � PPÿ10 � CCÿ10 �
L

L0
G�v� : �4:15�

In other words, an assumption that the velocity of inertial
motion has no effect on the MC rod length and the multiplier
L=L0 is unity in all RFR leads to B � G�v� as the unimodular
GG basis (4.11).

Con c l u s i on 4.3. The definition of Galilean geometry
can be obtained based on the wave-type chronometric
procedure, using, however, `corpuscular' rather than wave
determining relations (4.14).

No t e 4.1. The ray technique can also be employed for the
formal definition of Euclidean geometry (Fig. 13b) by
choosing the following ray matrix in the equation C � BS,
where

C � �sin a� cos a�E� �sin aÿ cos a�J ;

and the matrix S retains the standard form S � Eÿ J.

4.1.6 Constant length postulate. In the previous descriptions of
wave and corpuscular clocks, an a priori arbitrary rod length
L�v� has been chosen to be graphically identical with the

length of an intercept on the AFR space axis distinguished by
the world lines of the OC rod ends (Fig. 12b). When
completing a definition of the Galilean basis (4.15), it was
assumed that

L�v� � const � L0 : �4:16�

That is to say, we actually accepted the constant length
postulate (CLP) for all RFRs and AFRs.

In the case of the OC, the `arbitrary choice' of the length
function L�v� was associated with the choice of the value of a
common multiplier r [see Eqns (4.8) and (4.12)] which was
considered `redundant' in Section 3 [see Eqn (3.8)]; in the
isotropic variant, it was related to other parameters in the
following way

r2 � �L=L0�2
1ÿ v2=c2 �

�
L

L0
g
�2

�
�
L

L0
cosh a

�2

: �4:17�

The epithet `redundant' appeared chiefly because unimodular
Minkowskian geometry is consistent with the condition of
disappearance of this multiplier:

r � 1 ) L � L0

g
� L0

�������������
1ÿ v

2

c2

r
� L0

cosh a
: �4:18�

This, however, gives rise to the relativistic effect of `shrinkage
of length' L�v�with increasing velocity v of inertial motion. It
appears from the ray scheme of Minkowskian geometry
(Fig. 13c) that, in this case, ray parallelograms are tangential
to hyperbolic etalons. For this reason, the lengths of axis
segments cut by these tangents decrease with increasing
velocity of RFR, in accord with Eqn (4.18).

Qu e s t i o n 4.2. Is supplementing of a definition of the
`redundant' multiplier possible based on the constant length
postulate?

Indeed, it is possible but such a description leads to a new
chronogeometry with hyperbolic etalons and without length-
shrinkage and time-dilation effects.

The choice of condition (4.16) instead of (4.18) gives, in
agreement with Eqn (4.17), the relationship

L � L0 ) r �
�
1ÿ v

2

c2

�ÿ1=2
� cosh a : �4:19�

Then, the standard matrix of Lorentz basis or hyperbolic
rotation acquires an additional multiplier:

B � rL�v; c� � cosh aH�a� ;

which modifies the basis in the following way

B � cosh aH�a� � �cosh a�2E� cosh a sinh a I

� 1

2

ÿ
E�H�2a�� : �4:20�

Taking into account that matrix H is the solution of the
generating equation in Minkowskian geometry [see Eqns
(A.33) and (3.11)], the following matrix equation can be
written for basis (4.20):

�2Bÿ E� 0 F�2Bÿ E� � F : �4:21�

This is the generating equation of the isometric version.
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Figure 13.Raymodels ofGalilean (a), Euclidean (b), andMinkowskian (c)

geometries, and the isorhythmometric version (d).
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It is easy to see that in this modification of Minkowskian
geometry, the isometricity condition (4.19) ensures at the
same time the isorhythmicity condition T � T0, the two
parameters being related [see Eqn (3.9)] by the condition
L=T � L0=T0 � c. The graphical comparison of unimodular
and isometric versions is given in Fig. 13d. Here, the sides of
the ray parallelograms in isometric and isorhythmic versions
are secants of hyperbolic etalons. When the RFR velocity
changes, the sides of the parallelograms `rotate' about basal
points �e1 and �e2, which thereby represent fixed events of
all RFRs.

Con c l u s i on 4.4. Chronogeometrymay satisfy PCSL in
the absence of length-shrinkage and time-dilation effects and
be defined in a generalized form by matrix equation (4.21).

4.2 Pascal's procedure
A common element of chronometers considered in previous
sections was endmirrors or screens for the reflection of etalon
signals which, being reflected, change the direction of motion
(of a corpuscle) or propagation (of light and sound). Such
clock construction may be referred to as themirror metaphor:
the mirrors in AFR and RFR are represented kinematically
by straight lines parallel to the time axis, and ray parallelo-
grams by two pairs of vertices. One pair corresponds
therewith to the initial emission event and the final event of
ray intersection, either being incidental to the time axis. The
other pair corresponds to intermediate events of reflection
from mirrors which, in an isotropic case, are interpreted as
concurrent events determining the spacelike axis.

The chronogeometric interpretation of locomotor syner-
gies proposed in Section 2 is inconsistent with the mirror
metaphor and will be tentatively termed the locomotor
metaphor. In this interpretation, reference events incidental
to the support straight line (Figs 5d and 6h) are considered to
be analogous to reflection events. Additional hypotheses of
instrumental properties of the controlling brain system are
needed to explain the formation of hyperbolic etalons of
locomotion synergies (Fig. 6e ± g).
4.2.1 Wave instrumentation of the brain. In the framework of
the control theory well-developed for technological systems,
stride invariants may also be explained in terms of feedback
circuits. However, we believe the wave control hypothesis to
be more adequate for the interpretation of distributed brain
media since it allows new concepts of neurophysiological
relativism to be generated. The speculative assimilation of this
approach is naturally to begin based on the `etalon wave'
postulate. Prior to this, however, it is advantageous to reach
an agreement, in an abstract form, on the relationship
between external events (e.g. representing the target trajec-
tory of limb motion) and internal processes in the central
nervous system. The minimal coordination of real kinematic
events and their virtual images requires two assumptions.

Ta r g e t map hypo t h e s i s. Distributed brain media
generate a linearlike image of the limb target trajectory.

Such a hypothesis allows the same parameters as before to
be used (to within linear isomorphism) for the description of
the intracentral target trajectory image. Also, it makes it
possible to match limb and etalon wave space-time trajec-
tories as kinematic brain map entities. Generally speaking,
the brainmay be supposed to contain twomaps: the bodymap
which plays the role of the AFR and is associated with the
target trajectory image, and the environmental map serving as
the RFR during locomotion. The existence of these maps has
been confirmed in neurophysiological studies.

With this in mind, kinematic problems of locomotion
control can be interpreted as that of the coordination of
events on the two maps. Certainly, the problem of coordina-
tion of events on the body map and the map of the variable
outer world is very important in the context of `locomotor
intellect'. The question arises, what neural instruments and
mechanisms are involved in the solution of this problem?

E t a l on wav e h ypo t h e s i s. Measuring procedures for
orderly brain map events are realized taking advantage of
standard spreading processes, i.e. etalon waves generated by
nerve cells.

Estimates of constants c1 and c2 obtained in the descrip-
tions of cycle structure synergy (see Tables 5 and 6) may be
interpreted as etalon wave velocities involved in the forma-
tion of this synergy. Earlier, we considered the major
quantitative characteristics of these velocities (see Section
2.5.2). In terms of unidirectionality, anisotropy, and anhar-
monicity, etalon waves of the locomotor theory of relativity
(LTR) are different from their well-known physical analogue
Ð etalon waves of STR.

By virtue of unusual properties of etalon waves, space-
time diagrams of LTR are constructed differently from the
analogous STR diagrams. Anisotropic and anharmonic
versions of STR proposed earlier in this review served to
prove the possibility of taking such modifications into
account in the framework of the mirror metaphor. However,
the property of unidirectionality of etalon waves is incon-
sistent with the chronometric technique based on this
metaphor. New constructive approaches differing in princi-
ple from the existing ones are necessary if this property is to be
taken into consideration.

4.2.2 Secondary ray reinitiation model. Figure 14a exemplifies
a new diagram representing a kinematic-type algorithm for
the construction of a target event of swing phase cessation
y� 2 Z bymeans of a wave procedure which differs from both
the Einstein procedure (Fig. 11a, b) and the OC ray parallelo-
gram (Fig. 12a, b). Here, o 2 Z is a pacemaker event of
initiation of two primary rays c1 and c2, for which the
support portion of the conjugate trajectory Z � serves as the
boundary condition of secondary ray reinitiation (r1 and r2
are reinitiation events determined with respect to the point c0
where trajectories intersect). The secondary rays form a target
event y� � c1 � c2 coincident with the fourth vertex of the
etalon wave ray parallelogram.

In the kinematic perspective, it is worth noting the
projective properties of diagrams with unidirectional etalon
waves (Fig. 14a), in which the support straight line has the
projective sense of the so-called Pascal's straight line.
Consideration of this simple mathematical fact is conducive
to the understanding of how a hyperbolic space-time metric
can be formed with the participation of etalon waves, based
on measuring logical procedures. To further emphasize the
projective nature of this diagram, it should be conveniently
termed Pascal's procedure to distinguish it from the Einstein
physical procedure which, from the mathematical point of
view, is a modification of Pascal's procedure.

The latter procedure is elementary in the sense that it
allows for a hyperbola to be graphically constructed only with
the aid of a T-square. But it is this instrumental simplicity that
is crucial for understanding the constructive nature of
neurochronogeometry (where etalon waves play the role of a
T-square).
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4.2.3 Support straight line method. The previously described
general method for the construction of parallelogram basis P

in the form of Eqn (4.6) may be used to determine base matrix
B of `Pascal's clock', but taking into account the new
boundary conditions for primary rays. Thereafter, the initial
parallelogram P0 is distinguished and the RFRmetric basis B
determined, the latter being understood as a basis with respect
to which an arbitrary parallelogram P � BP0 is presented as
the initial parallelogram P0. In the previous relativistic clock
models, the natural criterion for distinguishing the initial
AFR parallelogram P0 was the zero relative velocity
condition, v � 0. In Pascal's clock, however, such a criterion
does not always hold, and its alternative analogue is the
condition v � v0, i.e. the choice of characteristic velocity.

In the general matrix definition of parallelogram basis
P � CSÿ1, the ray matrix C � �c1; c2� is completely defined
(Fig. 14b) by the boundary conditions of intersection of the
rays and the support straight line L�r; c0�, where r �
�tr; xr� 0 � tr�1; v� 0 is the direction vector, and c0 � �t0; x0� 0
is the center of rotation of the support line. By distinguishing
collinear events r1 and r2 � lr1 on the support straight line,
the following boundary conditions can be deduced for initial
rays:

c1 � c0 � r1 ; c2 � c0 � r2 :

Passing over to the matrix representation of these
conditions

C � X � �c0 � r1; c0 � lr1� ;

we shall take into consideration [see Eqn (3.16)] that the ray
matrix is factorizable into a product of twomatrices, base and
gauge ones, C � VCDC. This directly enables the diagonal
matrix to be distinguished:

DC � Vÿ1C X � ��c0 � �r1;�c0 � l�r1� :

Then, the right-hand side of the boundary conditions is the
previously defined (see Section 3.3.4) transition to the ray
basis (the bar over vector notations indicates the representa-
tion of these vectors in the ray basis). The solution of these
equations gives l � �v=�v0 and the components of the gauge
matrix DC:

�t � �t0 � �x0
�v
; �x � �v�t0 � �x0 ; �4:22�

i.e. elements of vector �p � ��t; �x� 0 one half of which form the
bilaterally symmetric parallelogram basis

P � DCS
ÿ1 � 1

2
��p;F�p� :

It follows from the parametric equations (4.22) that vector
�p � ��t; �x� 0 is incidental to the equilateral hyperbola H��c0� the
center of which is coincident with the center of rotation of the
support straight line (a similar construction has been
described above, see Fig. 5d). Basis P0 � ��c0;F�c0� correspon-
ding to the characteristic velocity �v � �v0 is regarded as an
`initial' one. Therefore, it follows that

B � P P
ÿ1
0 � D

�
�t
�t0
;

�x

�x0

�
� D

�
1� �v0

�v
; 1� �v

�v0

�
: �4:23�

Hence, metric basis will assume the form

B � VCBV
ÿ1
C � VCD�d1; d2�Vÿ1C : �4:24�

L

to

y

r2

c2
2c0

p

c0

c1

r1

b

Z
�

Z

to

y

r2

r1

c2

y� � c1 � c2

c0

c1

a

H�o�

H�c0�

to

x

c0

e2

e1ÿe1

ÿe2

c

Figure 14. Ray diagram illustrating formation of a target step event (a)

used as a synthetic mechanism (Pascal's procedure) for the hyperbolic

metric of locomotion control; (b, c) ray method for the construction of

canonical hyperbola H�o� in Minkowskian geometry and basal hyperbola

H�c0� of isorhythmometric geochronometry.
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When deciphering symbols d1 � 1� �v0=�v, d2 � 1� �v=�v0, the
velocity ratios defined in the ray basis should be substituted
by the following wurf

�v

�v0
� w�v; v0; c1; c2� ; �4:25�

the first formula in Eqn (3.30) is sufficient to obtain this wurf.
We now exclude the velocity parameter from the equa-

tions and replace them by the quadratic form

��pÿ �c0� 0 I��pÿ �c0� � �c 00 I�c0

) �pÿ c0� 0M�pÿ c0� � c 00Mc0 ; �4:26�

where M � �Vÿ1C � 0 IVÿ1C � �Cÿ1� 0 ICÿ1 because DID �
jDj I, i.e. the target etalon of basis B in `Pascal's clock'
makes up basal hyperbola H�c0;C� with a center c0 and
asymptotes directed by the vectors of ray matrix C. That
this hyperbola is basal: o 2 H�c0;C�, i.e. one of its branches
passes through the origin of coordinates (see Definition 2.5),
follows from the right-hand side of its quadratic form since
the analogous hyperbola of the common place with a
distinguished fixed point p1 2 H�c0;C� is described by a
similar form

�pÿ c0� 0M�pÿ c0� � �p1 ÿ c0� 0M�p1 ÿ c0� : �4:27�

Corollaries to the requirement of invariance of the general
quadratic form with the symmetrical metric matrix have been
discussed previously (see Section 2.2.4).

4.2.4 `Pascal's clock' invariants. In terms of the general
algebraic structure, the Pascal clock basis (4.24) is a special
case of the generalized model (3.20) in which the ray basis is
procedurally invariant as follows from the equality VS � VC.
This accounts for the coincidence of the projective and gauge
invariants of basis (4.24) with the invariants of the anisotropic
version of Lanczos method (3.36). This inference can be
confirmed by applying Corollary 3.3 to basis (4.24). This
procedure reveals a linear relation of base vectors b2 � Ab1
and a connection matrix A having the form (3.13).

Salient properties of Pascal's clock are manifested in
gauge variables (4.22), from which the elements of the
diagonal basis (4.23) are formed. Because natural parame-
trization of the resultant basis (4.24) with respect to velocity
results in distinguishing wurf (4.25), the substitution

e 2a � w�v; v0; c1; c2� �4:28�

is equivalent to Kleinian projective reparametrization (see
Note 3.3) which leads to the standard representation of basal
basis

B � 1

2

ÿ
E�H�2a; c1; c2�

� � cosh aH�a; c1; c2� ;

whereH�a; c1; c2� � e aN is the matrix of generalized hyperbo-
lic rotation characterized by the generalized structural matrix
N � VCFV

ÿ1
C ,N2 � E [cf. Eqn (3.23)]. Hence, we arrive at the

following form of the generalized generating equation of
`Pascal's support chronogeometry':

�2Bÿ E� 0M�2Bÿ E� �M ; �4:29�

where M � JNÿ1 is the metric matrix (see Section 6.3). In a
special canonical case of the isotropic model, one finds

H�a;ÿ1; 1� � H�a� ; N � I ; M � F :

This means that in this case Eqn (4.26) undergoes trans-
formation into Eqn (4.21). Support reconstruction of cano-
nical isometric chronogeometry (Fig. 14c) provides a compa-
rative visual demonstration of the constructive properties of
Pascal's clock and optochronometer (Fig. 12a).

Equation (4.21) has been initially derived in the frame-
work of the mirror metaphor of chronometry using Einstein's
procedure. However, this required an additional condition of
constant etalon length (or period). Now, chronogeometry
with an identical algebraic structure is obtained using Pascal's
procedure without additional isometric or isorhythmic
conditions. It is the absence of additional conditions that
makes the `support metaphor' more adequate for the
constructive interpretation of isometric properties of chrono-
metry which gives rise to the basal etalons of Eqn (4.26).

Con c l u s i on 4.5. A geochronometry satisfying PCSL
and lacking in length-shrinkage and time-dilation effects is
constructively defined with the aid of Pascal's procedure.

4.3 Fixed event method
The most difficult area of constructive chronogeometry is the
development of the procedural rationale for projective
anharmonism which is supposed to be due to the additional
properties of projective correspondence between bundles of
base axes rather than to the anisotropic propagation of etalon
signals. This difficulty can be overcome with the fixed event
method (FEM) which has been preliminarily described above
in connection with analytical substantiation of stride cycle
structure synergy (see Section 2.5.5). In the present section,
we consider the general geometric properties of FEM as an
additional concept (`metaphor') of constructive relativism.
Pascal's procedure may be used to construct not only
hyperbolas but also other second-order curves. By analogy,
FEMmay also be used to form nonhyperbolic metric etalons.
It is however clear that hyperbolic forms are more suitable for
chronogeometric applications.

4.3.1 Two construction problems. Many circle properties are
closely related to the notion of perpendicularity (for example,
a tangent can be perpendicular to the radius, the same as the
diameter across the middle of a chord is perpendicular to this
line). The analogue of such orthogonal correspondence for the
hyperbola is the property of harmonic correspondence.

Let C�xc; x1� be a circle with the center xc and incidental
point x1. Similarly, let H�xc; x1� be a hyperbola for which
asymptotic directions defined by constants c1 and c2 need to
be known besides the center xc and incidental point x1 (in the
forthcoming discussion, the directions of asymptotes will be
assumed to be known).

P r ob l em 4.1. A figure (circle or hyperbola) has center xc
and point x1; it is necessary to find another arbitrary point of
the figure.

The solution for both figures is offered in Fig. 15a, b. In
the case of circle C�xc; x1�, we draw an arbitrary radial
straight line L2, construct bisector L3, and drop a perpendi-
cular on the bisector from point x1; the perpendicular is
extended to intersect the straight line L2 at the desired point
x2. The parallelogram P � fxc; x1; x2; x3g formed by vectors
r1 � x1 ÿ xc and r2 � x2 ÿ xc is rhomboid in shape, and its
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diagonals, i.e. chord L�x1; x2� and radial L�xc; x3� straight
lines, are mutually perpendicular.

To construct the hyperbolaH�xc; x1�, two straight linesA1

and A2 parallel to asymptotes are first drawn through a given
point x1. Then an arbitrary radial straight line L crosses
straight lines A1 and A2 at points a1 and a2, respectively.
Additional straight linesA3 andA4 parallel to the asymptotes
are drawn through new auxiliary points a1 and a2. Then, the
point to be found is x2 � A3\A4. The parallelogram of
asymptotes, P � fa1; x1; x2; a2g, has a chordal diagonal
L�x1; x2� and a radial diagonal L�a1; a2� in harmonic
correspondence. The diagonals of the central parallelogram
P � fxc; x1; x2; x3g are collinear with those of the parallelo-
gram of asymptotes.^

P rob l em 4.2. A figure (circle of hyperbola) has three
given points fx1; x2; x3g; one should find the center xc of the
figure.

The solution for both figures is presented in Fig. 15c, d.
The given points are first connected in pairs by chords which
form a triangle. Then, perpendicular lines drawn through the
middle of the chords intersect at point xc, thus giving the
center of the circumscribed circle C�xc; x1�.

In the case of hyperbola H�xc; x1�, a parallelogram of
asymptotes is constructed for each chord. Its radial diagonals
intersect at the center xc.^

In the chronogeometric context, parallelograms of
asymptotes are equivalent to ray parallelograms. It has been
shown earlier in this paper that projective correspondences
are easier to represent in the ray basis. If the above two
problems for hyperbolas are transformed into the ray basis,
the ray parallelograms turn into rectangles with bilaterally
symmetrical diagonals. This means that bilateral symmetry of
straight lines or vectors is a special (and simplest) case of
harmonicity. For brevity and for greater analytical simplicity,

FEM is further considered in the ray basis (the bar over the
symbol in this basis, its identifier, will be not used any longer).

4.3.2 Linear bundle correspondence. It has been mentioned
before that the plane basis B � �b1�v1�; b2�v2�� is formed by a
pair of coordinate axis bundles having a common center at the
origin of coordinates o. The orientational invariant establis-
hes the scalar correspondence of the axes (see Section 6.7),
which can be expressed in the vector form. For example, if the
axes' correspondence fulfills the bilateral symmetry condi-
tion, the axis slopes have different signs:

b2 � lFb1 ) v2 � ÿv1 ;

i.e. such bundles are in harmonic correspondence. The
simplest variant of anharmonic linear correspondence is
ensured by continuous additional deformation:

b2 � lDFb1 ) v2 � ÿqv1 ; �4:30�

so that q � d2=d1 is the linear correspondence coefficient if
D � diag �d1; d2�.

It has been shown above that the projective correspon-
dence between base vectors defined by the generalized PCSL
is represented in the ray basis (see Section 3.4.4) in the form of
linear relation (4.27). Let us now consider geometric condi-
tions maintaining the linear correspondence of two bundles,
B1�v1; x1� andB2�v2; x2�, having no common center: x1 6� x2.

An interesting subject is the correspondence between the
bundles of hyperbola chords, which is due to three points
located on hyperbola H. Let us therefore turn back to the
three points in Problem 4.2 and suppose that

fx1 � f; x2 � o; x3 � h1g 2 H�xc; h1� :
In other words, let us consider the first and the second point to
be fixed points of a certain hyperbolaH, and the third point to
be free. Vector x3 ÿ x2 � h1 ÿ o � h1 corresponds to the first
chord, and vector x3 ÿ x1 � h1 ÿ f � ÿh2 to the second.
Therefore, vectors h1 � �t1; x1� 0 and h2 � �t2; x2� 0 may be
considered as vectors emanating from the initial point o and
satisfying the fixed sum condition

h1 � h2 � f ( h1 � B1�v1; o�\B2�v2; f� : �4:31�

To avoid confusion of figure centers and bundle centers,
we introduce the following

De f i n i t i o n 4.1. The centers of straight line bundles are
termed foci.

It is worthwhile to note that this nomenclatural definition
is in agreement with the known notions of foci, e.g. of an
ellipse or hyperbola, which can also be represented in the ray-
specific interpretation as bundle centers (Fig. 16a), while
vectors of correspondence points satisfy the condition (4.28).

Th eo r em 4.1. If the common point of two bundles and
also their centers ( foci) lie on a hyperbola, then such bundles are
in linear correspondence:

fo; h1; f g 2 H�xc� ) v2 � ÿqv1 ( q � vf
vc
: �4:32�

P roo f. Hyperbola H�xc� in the ray basis is described by
parametric Eqn (4.22) which can be simplified if written in the
vector form, namely

h1 � V1xc ;

xc
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x3 L1
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Figure 15. Construction of a circle (a) and a hyperbola (b) with a given

center and one point; reverse procedure of the construction of circle (c) and

hyperbola (d) centers by three points.
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where V1 � V�v1� � E� �v1e2; vÿ11 e1�. By analogy, in accor-
dance with Eqn (4.29), it is possible to write

f � Vfxc ; o � V0xc ;

where Vf � V�vf� and V0 � V�v0�, i.e. v0 � ÿvc. For a
complementary vector h2 ,the equation

h2 � fÿ h1 � �Vf ÿ V1�xc
implies that v2 � ÿv1vf=vc.^

The constructive meaning of the proved theorem consists
not only in the relation of fixed and free events to the
hyperbola but also in the elucidation of the geometric sense
of the anharmonicity coefficient. The quantity vc being a
characteristic velocity, harmonic case takes place at f � 2xc,
i.e. when the fixed event is characteristic, and then q � 1. In
the opposite situation, fixed and characteristic events do not
coincide. An example of graphical representation is given in
Fig. 16b.

Con c l u s i on 4.6. Anharmonic correspondence reflects
the degree of displacement of a fixed event fwith respect to the
characteristic event 2xc.

4.3.3 Chord basis.Vectors h1 and h2 introduced above may be
considered separately as vectors that form the chord basis
H � �h1; h2�.

Th eo r em 4.2. In the case of anharmonic correspondence
between axes, the hyperbolic chord basis is bifocal and
bicentral: metric etalons of different axes are represented by
hyperbolas that pass through foci and have different centers:

H � �h1; h2� � �V1xc1;V2xc2� : �4:33�

P roo f. Assuming that anharmonicity of correspondence
between axes of chord basis is given by quantity q, the above
scalar relation q � vf=vc can be used to determine the
relationship between focal and central vectors:

tc � q1tf ; xc � q2xf ) xc � Df ; �4:34�

where D � diag �q1; q2�. Coefficients q1, q2 of this vector
relation form the diagonal matrix and are expressed through
the parameter q as follows

q1 � q

1� q
; q2 � 1

1� q
; �4:35�

and hence q1 � q2 � 1, q1=q2 � q.
On the assumption that xc � xc1 and D1 � D, the

equation for a base vector h1 can be substituted in the
following way

h1 � V1xc1 ( xc1 � D1f : �4:36�

Furthermore, in accord with the initial definition one has

h2 � fÿ h1 � �Eÿ V1D1� f � V2D2f ;

where D2 � ID1I; then vector h2 is defined by the following
parametric equation

h2 � V2xc2 ( xc2 � D2f �4:37�

and forms a hyperbola, the center of which, xc2, does not
coincide with the center xc1 if matrices D1 and D2 are
different. Only in the particular case of harmonic correspon-
dence when

q � 1: D1 � D2 � E

2
) xc1 � xc2 � f

2
;

the centers of branches h1 and h2 coincide, one has
v2 � ÿv1 � ÿv, and the effect of displacement of the origin
o with respect to the center of the hyperbola
H � �V�v� f=2; V�ÿv� f=2� is preserved.^

4.3.4 Inverse problem. Inversion of the previous problem
implies that bundle centers do not initially lie on a certain
hyperbola. Assume that the initial condition is presented by
the condition of linear correspondence

v2 � ÿqv1 �4:38�

for two arbitrary bundles B1�v1; x1�, B2�v2; x2� with the
correspondence point x � B1\B2. It is possible to come
back to the previous vector scheme, without disturbing
generality, by means of substitutions

x1 ! o ; x! h1 ; x2 ! f :

Also, the scalar condition (4.35) is converted into a vector
condition:

h2 � lAh1 ;

where A � D2F, and l is an arbitrary real parameter. Hence,
the following determining relations for vectors h1 and h2:

h1 � h2 � f ; h2 � lAh1 : �4:39�

Theo r em 4.3. Plane basisH � �h1; h2� defined by vector
conditions (4.36) is equivalent to the hyperbolic chord basis.

P roo f. Equations (4.36) can be rewritten in the form of
matrix

H � �E� lA�ÿ1�f; lAf � : �4:40�
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Figure 16. Variants of focal geometries: (a) focal parallelograms of ellipse

E and hyperbola H; (b) hyperbolic etalons of the fixed event method; (c)

fixed point f of basalC-circle geometry; (d) geometry of two pairs of basal

circles.
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In order to complete the solution, the formal parameter l
must be substituted by velocity-related parameters v1 or v2.
The substitution and subsequent transformations give

H � �V1D1f;V2D2f � � �V1xc1;V2xc2� ;

i.e. the same chord basis which has been obtained above [see
Eqn (4.30)].^

Not e 4.2. A peculiar character of this synthesis of
geometries is especially well apparent when a basal circle is
chosen to serve as a base etalon (Fig. 16c). Such a model
depends on relations (4.36) if A � J. In other words, the
condition of linear relation between base vectors is equivalent
to the orthogonality condition

b1 � b2 � f ; b 02b1 � 0 :

The `Euclidean' analogue of the general matrix equation
(4.26) is obtained by the choice of a unit metric matrix
M � E. Then, there is basis

B � cos aR�a� � cos a�cos aE� sin a J�

instead of (4.20), which contains a pair of basal circles
(Fig. 16d).^

This concludes the algebraic description and geometric
substantiation of the fixed event method.

5. Conclusions

Credit must be given first to observation rather

than to theories, and to theories only insofar as

they are confirmed by the facts observed.

Aristotle

In this section, we shall discuss in brief the semantic evolution
of fundamental notions pertaining to the subject matter of the
present review.

5.1 Physical entities
Space, time, and motion are three primary (fundamental)
entities of physics, i.e. a science of Nature as it was first
established by Aristotle [2]. The comparison of causes and
properties of motion of physical bodies also originates in
Aristotle's treatise Physics. Aristotle introduced the notions
of `force' and `energy' to distinguish common causes of
motion of animate and inanimate objects and coined, in
addition, the term `entelechy' which is currently interpreted
as the equivalent of the notion of `goal-oriented control' [52].

The original definition of physics by Aristotle implied the
rational cognition of the world including all natural objects,
both animate and inanimate. In the course of time, however,
physics concentrated on simpler, primary, mechanical con-
cepts as well as mechanical problems that have taken
centuries to be solved and required the efforts of Galileo,
Huygens, Newton, Euler, Lagrange, Laplace, andmany other
scientists. The original cybernetic definition of the essence of
life proposed by Aristotle was first disregarded as oriented
chiefly to the development of mechanical concepts and then
rejected and forgotten among attempts to construct novel
definitions proceeding from the mechanistic view of things,
i.e. neglecting other entities as `unnecessary'.

Aristotle's principal contribution to the foundation and
progress of physics as a science rests on the conceptual
semantic development of practically all basic entities
(referents) of the cognition of Nature. Besides the above

three entities (space, time, and motion), he included in the
list of physical entities place, velocity, acceleration, force,
matter, gravity, energy, etc. Also, he subjected all these
notions to logical analysis and even derived symbolic
formulas for some of them (e.g. velocity).

T Khun [35] advocated interconnection between scientific
revolutions and the appearance of new referent notions.
According to one of his examples, Galileo introduced into
physics the notion of `velocity', and Newton the notion of
`acceleration'. However, the notion of velocity had actually
been introduced by Aristotle, otherwise he would have not
been able to explain Zeno's `Achilles and turtle', `Arrow', and
other paradoxes. Further still the `Stadium' paradox has a
direct bearing on the relativistic theme of `summation of
velocities of relative motions': two groups of horsemen are
moving from the opposite directions in front of the stands of a
stadium; it is required to find the difference between approach
velocities at which the groups are drawing together as
estimated by two observers in different states of motion, one
being a horseman, the other a spectator at the stands.

Aristotle also developed notions of the position of the
point and continuity of space and time (manifest in continuity
of mechanical motions), which were important components
of his discursive technique. In short, if Khun's criteria are
valid, Aristotle initiated the greatest scientific revolution.
However, few physicists appear to be aware of the fact and
appreciate it, including Khun himself as follows from his
comparative analysis of the history of physics [35].

5.2 Time
The very first in-depth and comprehensive semantic analysis
of the notion of time was undertaken by Aristotle. His
arguments are widely known. Here is an excerpt from his
Physics [2]:

``Time is most likely to present itself as a motion or a
change... The change can be faster or slower, but time cannot
since it itself determines what is slow and fast. Fast is what
advances far for a short time, slow is what advances little for a
long time; meanwhile time is uniform everywhere and
throughout. What is moving progresses from something to
anything and is described as a continuous quantity: this
continuity ensures continuous motion, hence time. The
foregoing and forthcoming initially refer to a place, i.e. both
are connected with position. Time is a measure of body
remaining in the state of motion, it measures motion by
means of another restricted motion (the elbow measures the
length by determining a certain quantity which is ameasure of
an arbitrary length). Time is such as motion is.''

This quotation describes a method chosen by Aristotle to
prove the existence of time. On the one hand, there are many
different movements and changes (fast, slow, etc.) at each
instant of time. On the other hand, all movements share a
common property which should be called time. To measure
the common characteristic of all these movements, i.e. time,
we have to choose a certain etalon motion (`clock') and use the
notion of, so to say, instrumental time. There are different
ways to choose etalonmotion. Therefore, instrumental time is
such as etalon motion is. In other words, the Aristotelian
dependence of instrumental time on the choice of etalon
motion contains the modern relativistic time concept.

An updated analysis of the notion of time was undertaken
by H PoincareÂ in the late 19th century [42, 43]. Interestingly,
his analysis has much in common with that of Aristotle even
though the former contains no allusions to the latter. Instead,
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it offers new subjects, e.g. clock synchronization. Comparison
of the two texts indicates that the general concept of time
underwent little change during the centuries that elapsed from
the age of Aristotle to that of PoincareÂ . The main fact in the
evolution of this concept is the appearance of the notion of
individual or local time, which gave rise to the clock
synchrony problem. Aristotle knew three types of clocks: the
sun-dial, the sand-glass, and the water clock (clepsydra), but
only the sun-dial was used as a main etalon clock. Therefore,
it may be argued that the concept of global single time in the
whole Universe is more consistent with Aristotle's genuine
thought.

The book by ETaylor and JWheeler [62] contains a visual
representation of the mechanical space-time model in the
form of an infinite 3-dimensional cubic lattice made of one
meter-long rods and having a clock at each of its nodes.
Characteristically, the authors emphasize that the type of the
clocks is immaterial. Is it really so? How will it change our
understanding of time if sun-dials (or sand-glasses, for that
matter) are placed at the nodes of the Taylor ±Wheeler
lattice? Of course, the authors mean modern mechanical and
electronic clocks, or Langevin's clock, when they speak about
`clocks of any type'. We have already considered the
consequences of clock choice in the foregoing discussion (see
Sections 4.1.1 and 4.1.2). Here, suffice it to repeat the
principal conclusion that the transition from mechanical to
light (`wave') clock launched the relativistic revolution in the
physical worldview.

To sum up, the notion of time has been changing from the
age of Aristotle till the present due to the extensive adoption
of `personal chronometers'. The resulting problem of clock
synchronization is now dealt with in the framework of the
`world's standard time' concept which reverts our relativistic
outlook to the Aristotelian concept of global (absolute) time
throughout the Universe. Indeed, a paraphrase of his
syllogism (see above) brings us to the following conclusion:
if we may use many different clocks at a moment, there must
exist a common entity which should be called `universal time'
or simply time.

5.3 Space
Strictly speaking, the notion of a `relative frame of reference'
was first introduced by Aristotle. Although the Aristotelian
model of the Universe is essentially geocentric, the role of the
local reference system is played by the notion of `place' [2]:

``Place seems to be something peculiar and difficult to
understand... Place has three dimensions: length, width, and
depth, i.e. just the same dimensions by which any body is
defined... But we do not find any difference between a point
and a point place. Place would not be worth studying were it
not for the motion with respect to the place. Place is a fixed
vessel exactly as the vessel is a movable place. Therefore, if
anything is in motion inside something that moves, for
instance, a boat in the river, it sooner refers to it as to a
vessel. Preferably, placemust be fixed; therefore, place is most
likely the entire river since as awhole it is stationary. Thus, the
first fixed boundary of the enclosure is place. A body outside
which there is another body enclosing it is at a certain place...
A body without it is not. The Universe is nowhere.''

The Aristotelian notion of `enclosing place or body' is, so
to say, a naive analogue of the modern notion of `reference
system', and the rule of `the first fixed boundary of the
enclosure' rightly suggests how to define relative frames of
reference, whose `enclosure sequence' is limited to the

Universe (it is exactly for this reason that `the Universe is
nowhere').

The introduction of the notion of velocity was not a
central issue in the scientific revolution initiated by Galileo
(as he himself noted). ButGalileo introduced the instrumental
and measuring methodology into physical experiment, dis-
covered quantitative laws of simple mechanical movements,
and provided a rationale for the notion of inertial mechanical
systems. Galileo was the first to introduce an image of a
reference system in uniform motion (`ship') into mechanics in
order to demonstrate the impossibility of determining the
relative velocity of the ship in mechanical experiments.

Descartes, Newton, Leibnitz, and even Euler also left
comments on the notion of `place'.

Euler [68] wrote: ``What is in fact place? This question is
not so easy to answer.''

The difficulty was due to the fact that Euler was not aware
of a `coordinate system' when he published his book
Mechanics or Science of Motion Presented from the Analy-
tical Viewpoint in 1736. Strictly speaking, Descartes had
introduced a method for plane digitization with the aid of a
pair of noncollinear straight lines, but the notion and the term
`Cartesian coordinate system' were proposed byMaclaurin in
1742 (see Ref. [68, p. 11]). As soon as Euler came to know the
newnotion, he promptly wrote a new version of hisMechanics
(1765). Later, Lagrange introduced the notion of `generalized
coordinates' in his Mecanique Analytique (1788). However,
the formulation of vector axiomatics in analytical geometry
required many other `revolutions' to occur (the geometries of
Lobachevsky, Riemann, Klein, Weyl, Minkowski, etc.).

Qu e s t i o n 5.1. Have these `geometric revolutions'
changed our understanding of space?

The answer is in the affirmative but not without reserva-
tion. Indeed, the understanding has changed but partially. On
the one hand, a large number of metric geometries brought an
end to themonopoly and even dictatorship (afterHWeyl [13])
of Euclidean geometry as the sole option available to choose
the metric model of physical space. On the other hand, if we
are to adhere to the physical, i.e. instrumental (tool-based)
and conventional (method-based), view of the nature of
metric geometries (as H PoincareÂ insisted [43]), we should
accept the possibility of coexistence of different metric models
of the Universe (mechanical, gravitational, electromagnetic,
etc.). However, the assumption of such a generalized
relativistic view inevitably leads us to the logically justified
`absolute space' concept. This, in turn, removes the artificial
opposition between theNewtonian and Einsteinianmodels of
the world. Indeed, applying the above syllogism of Aristotle,
we may conclude that if it is possible to simultaneously use
many different coordinate systems or frames of reference in
the physical description of the Universe, then there is a
common entity which should be called `absolute space' or
simply space.

5.4 Principle of presumption of independence
It took physicists rather a long time to digest the idea of space-
time un i t y forwarded by H Minkowski in the early 20th
century. In the end, the scientific community fairly well fitted
itself into the new situation as indicated by the inclusion of
STR in school textbooks. Against such a background, any
attempt to revise the fundamentals of STR looks behind the
times.

It should be recalled, however, that the history of new
geometric concepts was complicated by many centuries of
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popular dissatisfaction with Euclid's fifth postulate. And also
for centuries Euclidean geometry has been one of the main
ingredients of the general school curriculum. More impor-
tant, it remains such till now. Other examples to the same
effect are readily at hand. Therefore, the standing argument
most frequently put forward by teachers (`even school-
children know this') cannot lay down the law for scientists
always calling everything in question.

The history of the fifth Euclidean postulate is interesting
and instructive in more than one aspect. When comparing it
with the history of the postulate of constant speed of light
(PCSL), one important fact should be borne in mind. After
the validity of Euclid's fifth postulate had been rejected by
Lobachevskian geometry, physicists came to realize that
Euclidean geometry was not a unique mathematical meta-
phor of physical space.

It is symptomatic even if somewhat illogical that, having
recognized the nonuniqueness of one geometry, physicists
and mathematicians with characteristic perseverance concen-
trated their efforts on the search for a more general but
necessarily unique or unified geometry, field theory, etc. We
believe, however, that the genuine cognition ofNature should
be sought through pluralism of methods, approaches, and
models rather than in pursuit of a unique, solely `true' model.
A physics which embraces an enormous range of problems,
from microevents and elementary particles to macroscale
events of astrophysics, needs different `clocks' and `rulers' at
different levels of cognition. There is a greater need for
adequate specialized tools than for universal ones.

A specific feature of the Cartesian coordinate system
consists in that its abstract realization ensures independent
parametrization of different dimensions. It means that not
only space and time are introduced a priori independently but
also all linear subspaces of the space itself are defined in a
`multi-one-dimensional' and linear way. Such a general view
of the space and time metric structure can be described as the
`presumption of independence principle' which is geometri-
cally expressed as an independent choice of both the
directions of linear coordinate axes and linear scale units for
each axis.

We consider upholding presumption of independence of
space and time (as opposed to the ideas of `monolithic unity')
to be a paramount aspect of theoretical physics. Indeed, we
believe that only this principle provides maximum freedom in
the construction of generalized models satisfying one or other
additional postulates, e.g. such as PCSL, and in the under-
standing of limitations imposed by the use of concrete
measuring instruments.

In linear algebra, hence in affine geometry, the principal
criterion of space (subspace) dimensionality is the number
of independent vectors of an appropriate dimension.
Whether the space itself is continuous or discrete, finite or
infinite is unessential. The libernetic independence criterion
determining degrees of freedom for the independent choice
of a definite number of space coordinates or parameters of
the system is also constructive because it is the most
important dimensionality criterion for both spaces and
control.

5.5 Organism as a machine
The title of Marey's book [37] suggests the mechanistic
character of his scientific methodology. However, it is
perhaps more to the point to associate it with machine
science [37]:

``Living creatures have been compared with machines
throughout the centuries, but only in our time is the
importance and relevance of such a comparison fully under-
standable... The comparison of animals and machines is very
useful in more than one aspect... A mechanical engineer can
draw useful information from the study of nature, which will
many times show him how the most difficult tasks can be
performed in a surprisingly simple way.''

Aristotle seems to have been the first to understand that
regulation (entelechy) is an immanent agency of life [2], which
characterizes him as a man of genius. However, this element
of his philosophy gained little support, and `vitalism'
remained a matter of controversy and criticism for many
centuries after his death. Only a few most creative intellects
like R Descartes, who believed that animate bodies are no
more than complicated machines [22], later came to under-
stand the Aristotelian concept. This explains why biology,
having neither scientific content of its own nor specialized
tasks in the cognition of the essence of life, long developed as a
descriptive discipline in the spirit of Aristotle'sDe Animalibus
Historia [1]. In other words, it largely concentrated on the
collection and systematization of new data which was also
useful. Moreover, other sciences used biological systems as
objects of research which gave rise to interscience disciplines
distinguished for a rapid increase in the level of scientific
activity, such as biomechanics, biophysics, biochemistry,
biomathematics, bionics, etc.

E SchroÈ dinger delivered his famous lecturesWhat is Life.
The Physical Aspect of the Living Cell in 1943 (see Ref. [67])
shortly before N Wiener's Cybernetics [14] was published
(1948). SchroÈ dinger's lectures did not directly concern
Aristotelian entelechy, nevertheless they greatly promoted
further constructive understanding of cybernetic concepts.
Our attempts to bring into accord different views of the
essence of life and control are summarized in a number of
works [50 ± 52, 55]. They proceed from the understanding of
the organism as a `constructor' and also distinguish freedoms
(degrees of freedom) as basic referents of control. In order to
better identify control functions, we proposed that cyber-
netics should deal with the problems of `executive power' and
libernetics be distinguished as a discipline concerned with
`legislative power'.

It follows from the above that only in the middle of the
20th century, the mathematician N Wiener [14] restored the
lost scientific content of biology (making no allusion to
Aristotle's ideas).

Why did Aristotle's entelechy sink into oblivion and
Wiener's cybernetics revolutionize biology?

We think that Wiener's argumentation proved more
convincing as based on the thesis of universal control
mechanisms operating in `the animal and the machine'. In
contrast, Aristotle had neither an adequate machine analogue
for comparison nor a specimen of a control device or
automated system, even though he was the first to introduce
the notion of an `automaton'. In other words, the long history
of machine-tool development created prerequisites for the
recent progress in biology.

At least five `machine revolutions' occurred between the
age of Aristotle and our time:

(1) hand tools were replaced by machine tools which
promoted integration of the production system;

(2) heat machines were instrumental in ensuring the
progress of all means of transportation;

(3) electrical machines ensured worldwide electrification;
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(4) electronic devices proved indispensable for the pro-
gress of means of communication and automation;

(5) modern information technologies support global
information networks.

Mechanical computing machines, robots, and other
automatically operated devices did not facilitate the under-
standing of the principles of control; in fact, they hindered it.
The understanding of these principles became possible by
virtue of the development and introduction of high-level
computer programming languages and methods of `object-
oriented programming', which are expected to give way to
`semantically oriented programming'.

Therefore, the afore-cited statement of Marey concerning
the practical utility of comparison of living organisms and
machines assumes even more importance today than it did a
century ago, taking into consideration that any artificial
(technical) machine can be shown to have characteristics of
its biological analogue. Does the great diversity of such
analogies suggest that life cannot be defined in the frame-
work of a single type of machines?

In the course of time, the construction of machines has
been changing, thus opening new prospects for comparison
with the un a l t e r e d structure of living things which contain
properties of all artificial mechanisms, both existing and those
likely to be created by copying models of biological systems.
In this way, man continues to attempt to understand the
essence of life through perceiving the principles of why and
how machines work in an environment resembling that of
living creatures. The synergetic representation of locomotor
and other motions is a variant of this machine approach.

5.6 Bioprogramming
In his locomotion studies, Marey used pneumopodographic
sensors to record support forces and accelerometers to
measure inertial components of forces. However, he focused
his attention on kinematic problems related to the formation
of step cycles of individual limbs and the phase coordination
between cycles of different limbs. In contrast, subsequent
studies of Braune and Fischer [73] in the late 19th century
were largely devoted to the dynamic reconstruction of an
isolated human step. The dynamic approach to the construc-
tion of steppingmovements has become themost popular one
in biomechanical research in the 20th century due to the
unprecedented complication of biodynamic features of
locomotor systems [10, 15, 25, 47, 76, 82], on the one hand,
and the extensive use of Lagrangian formalism for model and
theoretical descriptions of limb `force fields', on the other [8,
21, 82, 83, 86, 92]. At the same time, the second half of the
20th century witnessed an increasing interest in the kinematic
aspect of locomotion analysis [7, 15, 45, 61, 75, 77 ± 80, 86, 91]
with which our own studies are also concerned [3 ± 6, 27, 28,
57 ± 60].

NA Bernshte|̄n, who in many aspects anticipated
Wiener's cybernetics in his famous book published in 1947
(see Ref. [10]), proposed a comprehensive rationale of the
topological engram as a generalized and kinematic image of
integrated movements. For example, when a subject draws
geometric figures of different size and shape, the character-
istic features he (or she) produces tend to persist regardless
of the tool or a limb used for the purpose (or limb and body
posture for that matter) as if the brain stores a certain
etalon image against which to match a given specimen.
Similarly, the elements of letters and words which char-
acterize a person's handwriting reveal a surprising stability

of individual invariant traits, which underlies the possibility
of graphologic analysis. These simple examples of manual
goal-oriented movements are familiar to everybody and
therefore elicit no surprise unless one thinks of how the
simplicity of such and many other locomotory acts is
achieved.

A simple preliminary answer may be found in the
hypothesis of a brain kinematic programme planning distal
target trajectories, which serve as etalons for dynamic
executive programmes or, to put it in different words,
programmes of operating control over the targeted accuracy
of dynamic performance. We consider such an answer to be
right and convincing because modern robotic manipulating
tools are operated following the same principles, that is by
computers executing object-oriented programmes of three
types: for kinematic planning, target correction, and dynamic
performance. It should be emphasized, however, that this
`plausible' answer is based on known technical (`machine')
solutions which cannot substitute the knowledge of proper-
ties and programmes of real neuromotor control. Indeed, the
computer robototechnical metaphor of brain regulatory
function is needed exactly for the purpose of surveying the
boundless extent of mental activity. True, the `one-finds-
whatever-one-looks-for' rule is apt to do a great disservice
to a researcher. For example, some searched for Pavlovian
reflexes, identifying mental activity as salivation, and did
`observe' them. It is worthwhile to recall that in the recent
past, even in the 20th century, such endeavours were
considered to be true science and all others pseudoscience.
With this inmind, should we not bemore cautious in search of
new neuroprogramming elements, remembering the differ-
ence between the existing electronic computers and the
human brain, which is supposed by many to account for the
discrepancy between computer models and natural neuro-
physiological processes?

Not at all. We believe that this work must be intensified
rather than curtailed, to reveal more controversies and
conflicting phenomena, i.e. to yield negative results. It is
readily apparent that the value of the principal achievements
of Pavlov and his physiological school lies in the negative
findings which provided the basis for a new computer
paradigm. On the other hand, although such a slogan as `the
brain is a computer!' and such question as `can a machine
think?' date to the dawn of cybernetics, there has so far been
no considerable progress in this field [33, 45, 77, 87 ± 89]. As a
result, it remains unclear what kind of computational
problems the human brain has to deal with and what
semantic problems remain beyond the scope of computer
systems, just because these problems have never been
formalized and written as a programme.

The dynamic variability of walk control contrasting with
a far more stable kinematic picture, demonstrated by
V S Gurfinkel', S V Fomin, and T K Shtil'kind [21], suggests
the independent significance of a kinematic image as a target
function of dynamic control. Enhanced efficiency and
adaptivity of interactive kinematic control have been con-
firmed experimentally using a model stepping device [20, 39].
It is therefore not necessary to set off kinematic and dynamic
aspects of control since either plays a specific key role in the
general task of constructing movements. Indeed, kinematic
planning is an indispensable component of sensorimotor
targeting (`sensorimotor intellect'), whereas dynamic
resources and strategies provide tools to achieve the targeted
goals.
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The similarity of kinematic walk laws in arthropods and
humans, demonstrated in our comparative studies [30, 60],
confirms the similarity of kinematic tasks of stepping move-
ments in all walkers, both vertebrate and invertebrate. This,
in view of considerable differences in limb construction and
motion patterns [15, 34, 76, 81, 82], suggests the necessity of
elucidating the neurophysiological mechanisms underlying
phylogenetic invariance of kinematic control programmes.

5.7 `Relativistic brain' concept
It has been shown above in Section 4 that the fixed event
method best complies with the geochronometric conception
of locomotion synergies. The main conclusion from the
analysis of the biomechanical nature of stepping locomotor
invariants consists in that the motion control should be
viewed as the control of events in the space-time continuum.
This view can be illustrated by the following theses:
� the task of constructing a target limb motion trajectory

is solved by the brain as an integrated spatio-temporal
problem;
� the algorithm of constructing a target trajectory is

realized in distributed cerebral structures through the use of
neural wave processes with the purpose of determining
coordinates of support events, e.g. switching from one
motion phase to another;
� finite velocities of signal propagation through nerve

fibers account for the relativistic chronogeometry of brain
control systems; this means that, in the given case, the
relativism is of an instrumental measuring nature.

Definitive verification of the `relativistic brain' concept is
the subject matter of future experimental studies including,
without doubt, neurophysiological ones. A great deal of
preparatory work is needed to initiate such investigations
because the protocols of necessary experiments remain
unclear. This statement equally refers to such technical
problems as

Ð testing etalon waves and verifying their etalon nature;
Ð understanding the role of the body map in the solution

of movement construction problems;
Ð obtaining a target trajectory image.
The list of these unresolved problems indicates that the

relativistic concept suggests a new language for the descrip-
tion of intracerebral processes and simultaneously requires
the development of new experimental techniques.

This means that the practical applicability of biorelati-
vism is a matter of future developments, the prospects of
which are currently obscure. Nevertheless, the fundamental
significance of such a paradigm is evident. It is conducive to
the constructive revision of the general nature of relativism
(including its physical sense) on the ground of freer inter-
pretation of chronogeometries as consequences of measuring
procedures using waves as etalon processes.

6. Appendix

The definition of geometry as the theory of geometric
invariants was first formulated by F Klein [27, 35]. The
constructive version of this theory consists in the identifica-
tion of base invariant systems [42, 44].

6.1 Notation
Formulas, sentences in italics (definitions, lemmas, etc.),
figures and tables are consecutively numbered throughout
this section; therefore, references separated by large massifs

of text are supplemented with the number of the subsec-
tion.

Scalars, i.e. real numbers, are denoted by small letters a, b,
a, b, etc., and vectors by small bold letters, e.g. a and b.
Second-order vectors (2-vectors) in expanded form are
represented as 2-site columns: a � �a1; a2�0, b � �b1; b2�0.
Primed symbols denote transposition (in the present case,
for row representation of the column).

Standard vectors: o � �0; 0�0, e1 � �1; 0�0, e2 � �0; 1�0,
e � e1 � e2 � �1; 1�0.

Basis expansion of a vector: a � a1e1 � a2e2.
Scalar product of vectors (product of a row and a

column): a0b � a1b1 � a2b2.
Matrices are denoted by bold capital letters A, B, etc.
Special attention should be given to the frequently used

short polyvector representation of matrices as a row of
columns (vectors). For example, 2-matrices are written in
the following way:

0 � �o; o�; A � �a1; a2� �
ÿ�a11; a21�0; �a12; a22�0�;

lA � �la1; la2�; A� B � �a1 � b1; a2 � b2�;
AB � �Ab1;Ab2�; Ab � b1a1 � b2a2 :

6.2 Algebraic bases
The standard algebraic matrix basis is nilpotent:

EijEjk � Eik; EijEmk � 0 ; j 6� m ;

however, 2-matrices may be represented in the nonstandard
matrix basis fE;F; I; Jg:

E11��e1; o�; E12��o; e1�; E21��e2; o�; E22��o; e2�;
�A:1a�

E � �e1; e2�; F � �ÿe1; e2�; I � �e2; e1�; J � �e2;ÿe1�:
�A:1b�

Let an arbitrary 2-matrix A be represented in these bases in
the following way

A � a11E11 � a12E12 � a21E21 � a22E22

� a1E� a2F� a3I� a4J;

then, the linear connections between scalar components of
the two bases are

A � ÿ�a11; a21�0; �a12; a22�0�
� ÿ�a1 ÿ a2; a3 � a4�0; �a3 ÿ a4; a1 � a2�0

�
: �A:2�

Matrices of the nonstandard basis (A.1b) are elements of
the dihedral group

D 4 � fE;F; I; J;ÿE;ÿF;ÿI;ÿJ jF2

� I2 � ÿJ2 � ÿFIJ � Eg :
A group of the 8th-order dihedron, D4, represents all
elementary symmetries of the square (bilateral, central,
rotation, see below) and is noncommutative:

FI � ÿIF � J; FJ � ÿJF � I; JI � ÿIJ � F :
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Symmetric and skew-symmetric components of the
arbitrary 2-matrix A are

symm�A� � A� A0

2
� a1E� a2F� a3I;

skew�A� � Aÿ A0

2
� a4J : �A:3�

The nonstandard basis representation of the arbitrary 2-
matrix

A � a1E� a2F� a3I� a4J �A:4�

can be interpreted as a `dihedral quaternion' or, briefly,
`diquaternion' (another term is `antiquaternion' [39]), the
real matrix E is the analogue of the real unit, and matrices F,
I, J are real analogues of imaginary units.

Diquaternion is the solution of the quadratic character-
istic equation

A2 ÿ tr�A�A� jAjE � 0 ; �A:5�

containing two scalar coefficients, namely, trace of a matrix
and determinant

tr�A� � a11 � a22 � 2a1;

jAj � a11a22 ÿ a12a21 � a21 ÿ a22 ÿ a23 � a24: �A:6�

In the dihedral basis, the determinant is equal to the sum of
component determinants

jAj � ja1Ej � ja2Fj � ja3Ij � ja4Jj

( jEj � ÿjFj � ÿjIj � jJj � 1: �A:7�

When distinguishing vector-columns, determinant of 2-
matrices is represented by the skew-symmetric bilinear form:

jAj � ja1; a2j � a01Ja2 : �A:8�

Coro l l a r y 6.1. A 2-matrix with zero-trace is quasi-
involutive:

tr�A� � 0) A2 � ÿjAjE � �a22 � a23 ÿ a24�E : �A:9�

The quaternionly conjugate matrix

A� � a1Eÿ a2Fÿ a3Iÿ a4J � tr�A�Eÿ A � jAjAÿ1
�A:10�

is useful to distinguish `real' and `imaginary' components

Re�A� � A� A�

2
� a1E ;

Im�A� � Aÿ A�

2
� a2F� a3I� a4J : �A:11�

Coro l l a r y 6.2. The imaginary part of the diquaternion is
quasi-involutive.

6.3 Congruent matrices
It is assumed default that only 2-matrices are considered.
Such a limitation is necessary to use 2-matrices of the dihedral
basis without additional reservations.

Matrices A and B are termed congruent if there is such a
nondegenerate matrix X which satisfies the matrix equation

X0AX � B ; �A:12�

matrixM is autocongruent if congruent matrices coincide:

X0MX �M : �A:13�
Lemma 6.1. Skew-symmetric matrix J is autocongruent

to a multiplier equal to the transforming matrix determinant:
X0JX � jXjJ.

The p r oo f ensues from (A.12) taking into consideration
the bilinear form (A.8).^

Coro l l a r y 6.3.

Aÿ1 � J0A0J
jAj �

A�

jAj : �A:14�

Lemma 6.2. Solutions of Eqn (A.13) give rise to a matrix
group of autocongruences.

The p r oo f is obvious.^
Theo r em 6.1. Matrices of a group of autocongruences

can be represented as a matrix exponent.
P r oo f . Let us assume that matrices X of a continuous

group of autocongruences are represented as functions of a
real group parameter a: X � X�a�. Differentiation of Eqn
(A.13) with respect to the parameter a distinguishes the
exponential matrix N:

N 0M � ÿMN( N � dX

da
Xÿ1 : �A:15�

(1) Let matrixM be symmetric:M0 �M. In this case, Eqn
(A.15) can be rewritten in the following way:
N0M � �MN�0 � ÿMN, i.e. the product MN is skew-
symmetric. Therefore, it can be substituted by matrix J if
jMj 6� 0:

MN � J) N �Mÿ1J : �A:16�

Now, in accord with definition (A.15), it is possible to receive
for the known constant matrix N:

dX

da
� NX) X�a� � eaN : �A:17�

(2) Let matrixM be skew-symmetric:M 0 � ÿM. Then, it
follows from Eqn (A.15) that �JN�0 � JN (assumingM � J),
i.e. the product JN � A is a symmetric matrix. Now, using
Eqn (A.4): A � a1E� a2F� a3I, we can compute the expo-
nential matrix

N � Jÿ1A � ÿJA � n2F� n3I� n4J : �A:18�
This completes the formal proof of the theorem.^

The dihedral basis (A.1b) contains three elementary
symmetric matrices:

M � fE;F; Ig ) N � fJ; I;Fg ;

to which the following canonical rotation formulas corres-
pond:

J2 � ÿE) eaJ � cos aE� sin a J � R�a� ; �A:19�
I2 � E) eaI � cosh aE� sinh a I � H�a� ; �A:20�
F2 � I) eaF � cosh aE� sinh aF � H�a�: �A:21�
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Coro l l a r y 6.4. The case of M � E is equivalent to a
group of circular rotations R�a�, the case ofM � F to a group
of canonical hyperbolic rotationsH�a�, andM � I to a group of
equilateral hyperbolic rotationsH�a�.

If M is an arbitrary symmetric 2-matrix, then
M � m1E�m2F�m3I, in compliance with (A.3). Using
Eqn (A.14) once again, we find the general exponential
matrix

Mÿ1� m1Eÿm2Fÿm3I

jMj ) N�n2F� n3I� n4J ; �A:22�

where n2 � m3=m, n3 � ÿm2=m, n4 � m1=m, jMj � m2
1ÿ

m2
2 ÿm2

3 � m.
Co r o l l a r y 6.5. In the general case of a symmetric

autocongruent 2-matrix M, the exponential matrix N of the
exponential form (A.17) is represented by the imaginary part of
diquaternion, which is quasi-involutive (see Corollary 6.2).

It is possible to regard the autocongruent matrix of Eqn
(A.13) as normalized (without the loss of generality), i.e. to
assume that jMj � �1. Then, it follows from the general
definition (taking into account Lemma 6.1) that the square of
the exponential matrix becomes

N2 �Mÿ1JMÿ1J � jMjÿ1J2 � ÿjMjÿ1E : �A:23�

Hence, in view of (A.23), two situations are feasible in the
general case:

(1) jMj � �1) N2 � ÿEÐ circular rotation;
(2) jMj � ÿ1) N2 � �EÐ hyperbolic rotation.

6.4 Geometric bases
The Cartesian procedure for coordinatization of a plane
(2-dimensional linear manifold X2) is reduced to distinguis-
hing a starting point o � �0; 0�0 and two axes represented by
the straight lines L1 � L�o; e1� and L2 � L�o; e2� incidental to
the point pairs o, e1 and o, e2, respectively. Unit vectors e1 and
e2 are the standards (etalons) of length for the determination
(measurement) of arbitrary point coordinates:

x � �x1; x2�0 � x1 � x2 � x1e1 � x2e2 � Ex ; �A:24�

i.e. here the identity matrix E � �e1; e2� is a base matrix and
the introduced coordinate system X2 � fxjo;Eg is the system
of fixed axes (SFA).

The new system of moving axes (SMA) Y2 � fyj b0;Bg is
defined with respect to the SFA (Fig. 17a) by introducing a
new starting point b0 and new basis vectors b1, b2 which form
the base matrix B � �b1; b2�. Now, the former vector x is
represented as the sum of new vectors:

x � b0 � y1 � y2 � b0 � y1b1 � y2b2 � b0 � By ; �A:25�

where jBj 6� 0. The new coordinates yi are actually the lengths
of vectors yi in relation to etalons bi.

When passing into basis Y2, the new SMA acquires the
SFA status, and conversely the old SFA turns into SMA. This
is formally described, based on formulas (A.24) and (A.25),
by the simple inversion of base matrix y � Bÿ1�xÿ b0�. The
result is analogous to (A.25):

y � y1e1 � y2e2 � Ey � a0 � x1a1 � x2a2 � a0 � Ax ;

�A:26�

whereA � Bÿ1 is the inverse 2-matrix, and a0 � ÿBÿ1b0 is the
inverse initial vector.

In the algebraic model of linear space (A.24) ± (A.26), the
identity matrix E always represents the observer's intrinsic
basis. Therefore, any observer may regard his own basis as a
unit E-basis and assume it to be the SFA, while considering
nonidentity B and A bases to be extraneous and identical to
SMA.
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Figure 17. Equivalent points of two coordinate systems (a); symmetries of

elementary images of an arbitrary point undergoing the effect of matrix

operators of the base dihedral group (b); generalized metaphor of metric

plane etalons (c).
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6.5 Operator metaphor
Theprevious base-related interpretation of the vector equality
(A.25) is oriented to the `equivalent points' metaphor.

De f i n i t i o n 6.1. Two points are called equivalent if they
represent one and the same point of space in different
coordinates systems.

Let the SFA and SMAhave a common origin, b0 � o, and
two pairs of equivalent points fx1; x2g 2 X2, fy1; y2g 2 Y2 be
given. It is necessary to restore the SMA basis, i.e. to find a
matrix B, such that xi � Byi, i � 1; 2.

Matrices of the equivalent pairs, X � �x1; x2� and
Y � �y1; y2�, are connected by the base matrix

B : X � �x1; x2� � �By1;By2� � B�y1; y2� � BY ; �A:27�

hence, X � BY and B � XYÿ1.
A conceptual alternative to the base metaphor is the

operator metaphor which implies not only the existence of
one and the same space but a single coordinate system as well,
namely, the SFA. Then, vectors x and y in Eqns (A.25) and
(A.26) represent in the general case different points resulting
from the action of the operator of direct A and inverse B
affine transformation:

B�fb;Bg : x � b� By, A � fa;Ag : y � a� Ax :

�A:28�

Examp l e . The dihedral group matrices acting as
operators on an arbitrary point x give rise to the vertices of
a centrally symmetric octagon (Fig. 17b).

The point of the plane x � �x1; x2�0 has two arbitrary
coordinates. Therefore, the act of its choice is characterized
by two freedoms. We denote this libernetic property of the
point as lib�x� � 2 [in the general case of multidimensional
spaces, the number of the point's coordinate freedoms is
coincident with the space dimensionality, lib�x� � dim�x�].

In the case of the operator-based approach, the question
arises as to the libernetic resource of an arbitrary transforma-
tion, specifically that of the general affine transformation
(A.28). This problem is resolved using `probe figures' contain-
ing a fixed set of arbitrary points, Xn

m � fx1; . . . ; xmg; the
subscript of symbolXn

m is the number of points (vertices), and
the superscript is the space dimensionality, lib�Xn

m� � mn.
Qu e s t i o n 6.1. What is the maximum number of points

needed to ensure that an arbitrary pair of figures Xn
m and Yn

m

are superposed (congruent) by means of a given transforma-
tion?

The answer for linear transformations (A.28) is available
from the basic theorem of affine geometry. In the general case
m � n� 1, because the resources of freedoms of affine
transformations and figures are the same:

lib�Xn
n�1�� lib�A�� lib�A� � lib�a� � n2 � n� n�n� 1� :

�A:29�

Aparticular variant of this general situation is represented
by SMA bases (A.25); being geometric objects, they have
3 vertices:

fb0; b0 � b1; b0 � b2g�fx1; x2; x3g� X 2
3 ) lib�X 2

3 � � 6 :

�A:30�
It follows that arbitrary SMA bases are affinely congruent
due to the similar parametric freedom resources of both the
transformations and bases.

6.6 Free geometries
In the Cartesian method for plane digitalization with the aid
of two noncollinear straight lines, theminimalmetric rules are
used as sufficient for the solution of the plane coordinatiza-
tion problem. The metric rules are indispensable for any
coordinatization. In this sense, there are no nonmetric
geometries.

Qu e s t i o n 6.2. Does the definition of SFA (A.24) and
SMA transformation rules (A.25), (A.26) give rise to a certain
geometry?

The answer to this question should be looked for in
F Klein's geometry (see Refs [27, 35]) as a theory of
geometric invariants. In order to introduce the constructive
aspect in the analysis of this theme, assume the following

De f i n i t i o n 6.2. An invariant of a transformation (or
basis or figure) is designated an additional condition limiting
one degree of freedom of this transformation (or basis or
figure).

We believe it useful to distinguish between invariants of
figures and invariants of transformations, and consider the
latter to be invariants of geometries [44].

In his general systematics of geometries, F Klein based his
ideas on the group principle and used the criterion of the
number of transformation freedoms to rank different
geometries.

G roup p r i n c i p l e . Each geometry is characterized by a
certain continuous group and vice versa, the more parametric
freedoms a group of transformations has, the higher
hierarchic status is ascribed to the corresponding geometry.

Geometric problems related to the analysis of general
properties of linear transformations are traditionally consid-
ered to be a subject of affine geometry. In the Kleinian
interpretation of geometry, the basic referents of such a
theory, i.e. its invariants, need to be distinguished.

Let LG�n;m� be the common identifier of a linear group,
where n is the space dimensionality, and m is the number of
parametric transformation freedoms. General affine trans-
formations preserving the operator structure under the
compositions of transformations give rise to a general linear
group LG�n; n2 � n�, the unit of which is, as a matter of
course, an identical operator E � fo;Eg. The group LG has
the maximum number of freedoms intrinsic in linear
transformations but has no parametric constraints. In other
words, it is a free group and therefore has no invariants, in
accord with Definition 6.2.

Co r o l l a r y 6.6. Affine geometry as the geometry of a
general linear group has no invariants of its own, i.e. it is a free
geometry.

In the forthcoming discussion, we use centroaffine
transformations as an initial free group; they are defined by
all nondegenerate matrices which form a linear group
LG�n; n2�.

6.7 General metric metaphor
Metric geometries, such as Euclidean,Galilean, andMinkow-
skian geometries, are represented in the planimetric version
as 1-parametric groups of coordinate transformations, which
are in turn subgroups of a general linear group LG. For this
reason, metric geometries may be interpreted as subgeomet-
ries derived from affine geometry by reducing the parametric
freedoms of coordinate transformations or coordinate bases.

In the case of a given affine basis B � �b1; b2�, we are free
to choose etalon vectors b1 and b2 arbitrarily and indepen-
dently.
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Let two arbitrary curves E1 and E2 given in the SFA pass
through unit points e1 and e2 (Fig. 17c). Let the curves E1 and
E2 be regarded as etalons of length of all SMA.

What is the outcome of such a global declaration?
Let us also construct in the SFA arbitrary straight lines

L1 � L�o; b1� and L2 � L�o; b2� intersecting etalons Ei at
certain points bi. Then, vectors bi are the base etalons of the
new SMA. It is such a linear (affine) parametrization of the
straight lines Li (SMA axes) that gives sense to the global
plane metrization with the aid of etalon lines Ei, i.e. unit
equidistants for a l l conceivable directions of Li axes.

The new 2-parametric basis B�a1; a2� (Fig. 17c) is defined
by vector-functions bi�ai�which are metric invariants (MI) of
the affine basis:

MI1 : b1 � b1�a1�; MI2 : b2 � b2�a2� :

An additional necessary constraint is B�0; 0� � E.
In the case of independent changes of angles ai, the basis

axes combine into independent straight line bundles. In order
to reduce the independence in the choice of SMA-axes
directions, an additional rule of axes correspondence is
needed, i.e. a third nonmetric invariant which can be
opportunely referred to as orientational invariant (OI):

OI : b1 ! b2 ) j�a1; a2� � const :

Thus, the reduction of affine geometry (AG) to metric
geometry (MG) is secured by virtue of the base invariant
system (BIS):

BIS � fMI1;MI2;OIg : AG!MG ; �A:31�

free affine geometry loses three freedoms out of the four,
while metric geometry acquires one freedom per rotation.

6.8 Geometries of symmetric quadratic forms
The description of `solid body' rotation in Euclidean
geometry is based on the requirement of quadratic form
invariance for the equivalent points x and y:

x21 � x22 � y21 � y22 , x0x � y0B0By � y0y ;

which [see (A.13)] is equivalent to a property of autocon-
gruence intrinsic in the identity matrix E:

B0EB � E ; �A:32�

matrices B as solutions of this generating equation provide
the necessary orthogonal bases which form their own
orthogonal group.

In Minkowskian geometry, the invariant quadratic form
is represented by the difference (but not the sum) of the
squares of coordinates of the equivalent points x and y:

ÿx21 � x22 � ÿy21 � y22 , x0Fx � y0B0FBy � y0Fy ;

therefore, the matrix generating equation contains the metric
matrix F:

B0FB � F : �A:33�

The invariance condition of the general quadratic form
with an arbitrary symmetric (nonsingular) metric matrix M

leads to the matrix equation

B0MB �M : �A:34�
The properties of basesB in this equation have been described
earlier (Theorem 6.1, Corollaries 6.4 and 6.5).

Traditional definitions of metric geometries are restricted
to the postulates of invariant properties of a scalar vector
product, but it is the matrix forms (A.34) that specify the
entire base invariant system:

B0MB � ÿ�b01Mb1; b
0
2Mb1�0; �b01Mb2; b

0
2Mb2�0

� �M :

Here, diagonal scalar equalities represent metric invariants,
and nondiagonal ones the orientational invariant. This
means that the invariant quadratic form method corres-
ponds to the generalized metric model of BIS (A.30).

It follows from (A.32) that for Euclidean geometry (EG)

SBIM�E � fb01b1 � b02b2 � 1; b01b2 � 0g ; �A:35�

i.e. etalons E1 and E2 of the base vectors coincide with one
and the same unit circle (Fig. 18a). This suggests an angle
between coordinate axes and allows the geometric content of
OI to be expressed in the following way: the angle between the
axes is always the same and right, a2 ÿ a1 � p=2. In case of an
elliptical rotation (Fig. 18b), the etalons E1 and E2 are
represented by different ellipses but the angles are determi-
ned using a common unit circle.

It follows from (A.33) for Minkowskian geometry (MG)
that

SBIM�F �fb01Fb1�ÿ1; b02Fb2 � 1; b01Fb2� 0g: �A:36�
Here, the etalons E1 and E2 are different branches of the
hyperbola, having common diagonal asymptotes x2 � �x1
(Fig. 18c). This geometry does not imply an angle between
coordinate axes, but the angles a1 and a2 of SMA axes with
respect to different SFA axes can be measured and compared
in terms of size. Then, the geometric content of the OI is
reduced to the statement of equality of angles: a2 � a1. In
other words, the equality of angles reflects the vector equality
b2 � Ib1, i.e. diagonal symmetry of SMA axes.

In Corollary 6.4, a third geometry model M � I is also
distinguished, the etalons of which are equilateral hyperbolas
(Fig. 18d) (their asymptotes coincide with the axes of
coordinates). In terms of metric invariant properties, this
model looks `exotic':

SBIM�I �fb01Ib1� b02Ib2 � 0; b01Ib2� 1g; �A:37�

that is the notion of length is interpreted here differently from
the way it is in cases (A.35) and (A.36).

6.9 Linear rotations
If the curved etalons in the description of the general metric
metaphor are substituted by straight lines, then the SMAbase
vectors

b1�a1� � e1 � a1c1; b2�a2� � e2 � a2c2

will make linear rotations. The choice of the group principle
of additive parametrization:

B�a1�B�a2� � B�a1 � a2�
for the extension of a definition of matrix B�a�, where
a � �a1; a2�0, leads to an 1-parametric group of linear
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rotations

B � E� aN � eaN ; �A:38�
where the structural matrix N � �e1 � ce2; ÿcÿ1e1 ÿ e2� is
nilpotent:

tr�N� � 0; jNj � 0) N2 � 0; jBj � etr�aN� � 1 :

The following expression holds for linear rotation geome-
try (LRG) (c � 1, Fig. 18f):

SBILRG

�
�
b11ÿ b21

c
�1; cb12 ÿ b22�ÿ1; c

v1
� v2

c
� 2

�
: �A:39�

Theo r em 6.2. Galilean geometry is a limiting variant of
linear rotation geometry as c!1.

P r oo f . In order to effect a linear rotation, the linear a-
parametrization needs to be first substituted by projective v-
parametrization:

v1 � b21
b11
� c

1� aÿ11

; v2 � b22
b12
� c�1� aÿ12 � :

The base matrix (A.38) retains its structure and becomes
parametrically nonlinear but after the limiting transition the

basis is linearly dependent on the parameter:

B�v; c� � E�
�

v

cÿ v
�
Njc!1 ! B�v� � E� vN � evN ;

�A:40�

where v � v1, and N � E21 � �I� J�=2 is the new structural
matrix. Now, it follows thatE1: b1�v� � e1 � ve2 is the vertical
straight line (Fig.18e) and E2: b2 � e2, which proves the
theorem.^

6.10 Numerical models of geometries
Some authors tried to find a relationship between complex or
other 2-site algebraic numbers (binions) and metric geomet-
ries (see, for example, Refs [39, 60]). An adequate geometric
interpretation of binions is possible using real matrix
representations which allow numbers to be determined
through the employment of the corresponding invariant
system, i.e. in the same way as geometries.

A system of two invariants is needed for the transition
from a 4-parametric affine group to a 2-parametric binion
group. Therefore, binion geometries are two-invariant geo-
metries. The general matrix representation of a binion

X � x1E� x2N �A:41�

a2

a1

x2

x1

y2

y1
b1

e2

e1

b2

E1=E2

a

o

a2

a1

x2y2

y1

x1

b1

e2

E1

E2

b2
e2

b

o

d

a

x2

x1

y2

y1

b2

b1 e1

E2

E4E3

E1
e2

o

a

x1

y1

y2 x2E2 E1

e1

e2 b2

b1

o

e
fx2

a1

a2

x1

y2

y1

E1

E2

e1

e2

b2 b1

o

c

a2

a1

x2

x1

y2

y1

b2

b1
e2

e1

E3

E4

E2

E1

o

Figure 18. Examples of representation of typical metric geometries through base etalons.
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contains a structural matrix N of the `imaginary' part, the
extension of a definition of which is implicitly given by the
conditions

tr�N� � 0 ; N2 2 fÿE; 0;Eg ;

where variant N2 � ÿE corresponds to complex numbers
(CN), variant N2 � 0 to dual numbers or nil-numbers (NN),
and variant N2 � E to double numbers (DN).

Simple explicit matricesN for CN andDN ensue from the
dihedral basis (A.1b), and for NN from the Galilean
geometry basis (A.40) (see Table 7).

If pairs of binion invariants are determined by comparing
the general base matrix B � �b1; b2� with matrix (A.41), the
reduction of the common basis fI1; I2g :B! X can be
expressed by a single vector condition

b2 � Nb1 : B � �b1; b2� � �b;Nb� : �A:42�

CN invariants can be represented by scalar products:

fI1; I2g � fb02b2 � b01b1; b
0
1b2 � 0g ; �A:43�

where I1 is the equality condition for the Euclidean lengths of
basis vectors, and I2 is the condition of Euclidean basis vector
orthogonality. It follows from the polar representation
B � r�cos aE� sin a J� that a third invariant is necessary to
obtain Euclidean geometry:

I3 : jBj � 1 ; �A:44�

which extends the definition of metric etalons to a unit circle.
For DN, there are analogous invariants

fI1; I2g � fb02Fb2 � b01Fb1; b
0
1Fb2 � 0g �A:45�

instead of (A.43), where I1 is the equality condition for the
basis vector lengths in Minkowski metrics, and I2 is the basis
vector orthogonality condition in the same metrics. It follows
from DN hyperbolic parametrization

B � r
ÿ
cosh aE� sinh a I�

that a third variant is needed to reduce DN geometry to
Minkowskian geometry, namely, the unimodularity condi-
tion (A.44).

NN geometry arises from affine geometry by virtue of two
invariants, and its unimodular version is equivalent to
Galilean geometry:

fI1; I2; I3g � fb1 � e1 � ae2; b2 � e2; jBj � 1g :

Numerical models of geometries (NMG) suggest a
similarity of invariant specification schemes by which
Euclidean, Minkowskian, and Galilean geometries are dis-
tinguished from affine geometry. In these models, the first

invariant is termedmetric (MI), the second orientational (OI),
and the third unimodular (UI).

Thus, we have proved the following:
Th eo r em 6.3.TheBIS of numerical models of geometries

is different from the BIS of the general metric metaphor (A.31):

SBINMG � fI1; I2; I3g � fMI;OI;UIg : �A:46�

If binion groups (algebras) are interpreted as subgroups
(subalgebras) of the diquaternion group (algebra):

A � a1E� a2F� a3I� a4J ;

it is possible to indicate two-invariant algebraic systems by
means of which the necessary reduction is achieved: quater-
nion! binion or A! X, with X having the form of (A.41).
For example, the following pairs of conditions correspond to
different variants of the choice of matrix N from Table 7:

CN : a2 � a3 � 0 ; NN : a2 � a3 � a4 � 0 ;

DN : a2 � a4 � 0 _ a3 � a4 � 0 :

CN andDN geometries are constructed in different group
bases of matrices fE; Ig and fE; Jg. Matrices fE; Ig form a
cyclic group C 2 � fE; Ig � fE;ÿEg or a group of involu-
tions.

DN algebra is defined in the dihedral group basis

D2 � fE; Ig � fE;ÿEg � fE; I;ÿE;ÿIg :

CN algebra is defined in the group basis of the 4-order
cyclic group

C 4 � fE; J;ÿE;ÿJg � fE; J; J2; J3g :

There are only two nonisomorphic groups (cyclic C 4 and
dihedral D2) [40] among abstract 4-order groups.

Co r o l l a r y 6.7. CN and DN geometries as well as
Euclidean and Minkowskian geometries have nonisomorphic
group bases.

The NN basis is not a group basis, and the nilpotent
matrix N, N2 � 0 cannot be an element of the discrete
multiplicative group, whereas an algebra constructed in the
nilpotent basis is a continuous group. A similar situation
occurs for the choice of the standard nilpotent matrix basis
(A.1a).

6.11 Polar coordinates models
The exponential formulas (A.20), i.e. matrix analogues of the
known Euler scalar formula for complex numbers, introduce
polar representations of base and other matrices, because the
distinguished scalar parameter a is geometrically interpreted
as the rotational transformation angle. Exponential repre-
sentations of rotations are canonical polar forms which
ensure additivity of angles in rotation compositions:

B�a1�B�a2� � B�a1 � a2� :

Let us consider another models of polar representations.
In the transition from the Cartesian coordinates of point

x � �x1; x2�0 to the polar coordinates x � ra�a�, the role of
standards (etalons) of length r and protractors of angle a is
played by various straight and curved lines. Standards of
length can simultaneously serve as protractors, especially in

Table 7. Structural matrices of binions.

Number N N2 jNj jXj
CN
NN
DN

J

E21

F; I

ÿE
0

E

1
0
ÿ1

x21 � x22
x21
x21 ÿ x22

October, 2000 Spatio-temporal problems of locomotion control 1049



Euclidean, Minkowskian, and Galilean geometries
(Fig. 18a, c, e). Conversely, lengths and angles can be
measured using different etalons. In the definition of
elliptical rotations (Fig. 18b), etalons of length are different
ellipses, while protractors are a common unit circle.

Figure 19a demonstrated three variants of the choice of
etalon straight lines:

L1 � L�e1; e� ; L2 � L�e2; e� ; L3 � L�e1; e2� ;

which yield three linear models of polar coordinates (PC):

x � r1�1; a1�0 ( r1 � x1; a1 � x2
x1
; �A:47�

x � r2�a2; 1�0 ( r2 � x2; a2 � x1
x2
; �A:48�

x � r�1ÿ l; l�0 ( r � e0x; l � x2
r
: �A:49�

Intrinsic angular measures of these etalons are related in a
linear-fractional way:

l � a1
1� a1

� 1

1� a2
, a1 � 1

a2
� l

1ÿ l
: �A:50�

These relations can be used to transfer (map) angular
parametrizations from one etalon to another. The mapping
l! a � a1 results in projective a-parametrization, instead of
affine l-parametrization (A.49):

x � r a�a� � r
ÿ
cl�a�; sl �a��0 ( r � e0x; tl �a� � x2

x1
;

�A:51�
here, linear cosine and sine functions

cl �a� � 1

1� a
; sl �a� � a

1� a
; cl �a� � sl �a� � 1 ;

and a linear tangent function

tl �a� � sl �a�
cl �a� � a

were introduced.
In the polar descriptions of linear (A.51), circular, and

hyperbolic rotations

x � r
ÿ
cos a; sin a

�0 ( r2 � x0Ex; tan a � x2
x1
; �A:52�

x � r
ÿ
cosh a; sinh a

�0 ( r2 � x0 Fx; tanh a � x2
x1

�A:53�

there is a standard tendency to prefer the projective parameter
(Cartesian coordinate ratio x2=x1) as a primary angular
measure providing the basis on which to determine various
functions of angle a for etalons of different form (Fig.19b).

No t e 6.1. The definition of the Euclidean angle as the
Euclidean arc length of a circle, using the differential
quadratic form da2 � dx0Edx, gives rise to the angle
trigonometric functions. This method is employed in differ-
ential geometry for the natural parametrization of arbitrary
continuous lines. Hyperbolic etalons of Minkowskian geo-
metry are also amenable to natural parametrization, but
hyperbolic functions of an angle need parametrization based
on the hyperbolic quadratic form da2 � dx0Fdx.

6.12 Linear-fractional transformations
Let x and y be the equivalent points of the SFA and SMA.
The affine relation between the Cartesian coordinates of these
points undergoes transformation to a linear-fractional
relation between their angles:

x � By) a � b11b� b12
b21b� b22

� fr�b;B� ; �A:54�

here, a � x1=x2 � a2, b � y1=y2 � b2 (Fig.19a,b), and
fr�b;B� is the common identifier of the linear-fractional
transformation (LFT) associated with matrix B of the affine
linear transformation (ALT).

The transitionALT!LFToccurs with the explicit loss of
base transformation dimensionality. That is to say, vector
transformation is replaced by scalar transformation with the
implicit loss of one parametric freedom hidden in the
possibility to reduce the common multiplier of the numerator
and denominator.

a
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a1a2

l

e1o

e2

L3

L2

L1
x � �x1; x2�0
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H
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Figure 19. Angular measures of linear and nonlinear etalons.
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The inverse transition LFT!ALT:

a � x1
x2
! x � �x1; x2�0; b � y1

y2
! y � �y1; y2�0 �A:55�

is performed by introducing a common undetermined scalar
multiplier necessary to restore ALT parametric freedoms:

b � fr�a;A� ! y � rAx _ a � fr�b;B� ! x � sBy ;

�A:56�

where B � Aÿ1, and s � rÿ1. Transformations (A.55) are
normally referred to as the transition from the nonuniform
coordinates of a straight line to the uniform coordinates of a
plane [65].

The arbitrary LFT (A.54) with a nondegenerate 2-matrix
of coefficients B, jBj 6� 0 form a 3-parametric projective
group PG(1,3) with respect to the operation of composition
fr�fr�b;B1�;B2� � fr�b;B2B1� equivalent to the product of
matrices, i.e. a group operation of the affine group. Major
variants of matrix transformations in LFT formulas are
summarized in Table 8.

The formulas are arranged on numbered lines, with
1 being identical transformation, 2 Ð inverse transforma-
tion, 3 Ð composition, etc. In formulas 7 and 8, the matrix
D � diag�d1; d2�.

Explicit reconstruction of an LFT 3-parametric matrix is
possible by means of the scalar projective basis.

In an SFA (Fig. 19a), three points fe1; e=2; e2g 2 L3 �
L�e1; e2� (see (A.50)) correspond to the following triples of
angular parameters:

l �
�
0;
1

2
; 1

�
! a1 � f0; 1;1g ! a2 � f1; 1; 0g :

In the SMA (Fig. 19c), three equivalent points
fb1; b=2; b2 j b � b1 � b2g 2 L3 � L�b1; b2� correspond to the
same values of equivalent angular parameters:

m �
�
0;
1

2
; 1

�
! b1 � f0; 1;1g ! b2 � f1; 1; 0g :

The substitution of base values b � f0; 1;1g into LFT
(A.54) yields

b � �a1 ÿ a1�=�a1 ÿ a0�
�aÿ a1�=�aÿ a0� : �A:57�

Here, a1 � fr�1;B�, etc., that is coefficient matrix A � Bÿ1 of
the 3-parametric base LFT b � fr�a;A� can be represented as
a product of two matrices:

A � diag�a1 ÿ a1; a1 ÿ a0��e;ÿa0e1 ÿ a1e2� ; �A:58�

jAj � �a1 ÿ a0��a1 ÿ a1��a0 ÿ a1� :

The inverse LFT is defined in the same way.

6.13 Projective invariant
The projective invariant (wurf) of four angles fa1; a2; a3; a4g is
traditionally represented in the form of a double ratio of four
differences:

w�a1; a2; a3; a4� � �a1 ÿ a3�=�a1 ÿ a4�
�a2 ÿ a3�=�a2 ÿ a4� : �A:59�

The wurf is interesting in that its value is an LFT invariant:

a � fr�b;B� ) w�a1; a2; a3; a4� � w�b1; b2; b3; b4� :

The comparison of formulas (A.59) and (A.57) reveals the
connection

b � w�a; a1; a0; a1� : �A:60�

This means that the base LFT is a function and can be
represented as a wurf. The inverse representation of the wurf
in the form of LFT is also possible:

w�a1; a2; a3; a4� � d1
d2
) a2 � fr�a1;A� ;

where A � Xÿ1Dÿ1X and X � ÿF� �xÿ14 e2;ÿx3e1�,
D � diag �d1; d2�.

For the systematics of invariants of plane geometries, the
wurf may be represented profitably in a bilinear form:

y1
y2
� fr

�
x1
x2

;A

�
) y0Mx � 0; M � JA : �A:61�

The bilinear condition y0JAx � 0 atA � J corresponds to
Euclidean orthogonality of vectors y and x. Hence, if A is an
arbitrary LFTmatrix, condition (A.61) may be interpreted as
a projective orthogonality condition.

6.14 Unimodular invariant
Because unimodular matrices constitute a group, it is ap-
propriate to speak about unimodular geometry in accordance
with the Klein group principle. The plane variant of such
geometry is of special interest. It follows fromLemma 6.1 that

jBj � 1, B0JB � J ; �A:62�

i.e. unimodular planimetry is equivalent to symplectic
planimetry which is generated by the invariant skew-
symmetric form [13, 20].

According to Theorem 6.1 or formulas (A.17) and (A.18)
for that matter, one has

B�a� � eaN� b1E� b2N( N � n2F� n3I� n4J : �A:63�

The functional aspect of scalar components b1 and b2 of
the binion form (A.63) depends on the determinant of the
structural matrix N, since N2 � ÿjNjE, where
jNj � ÿn22 ÿ n23 � n24. Three values of this determinant
jNj � f1; 0;ÿ1g correspond to the geometry with three types
of rotation, i.e. elliptical, linear, and hyperbolic. If the
determinant is fixed, the structural matrix N has two free
parameters which can be represented as angles a1 and a2 of the
trigonometric and hyperbolic functions listed in Table 9.

Now, metric Euclidean (EG), Galilean (GG), and
Minkowskian (MG) geometries can be interpreted now as

Table 8.Main LFT formulas.

1
2
3
5
6
7
8

b � fr�a;E�
b � fr�a;A�
b � fr�a;A1�, g � fr�b;A2�
fr�a;A1� � fr�b;A2�
bÿ1 � fr�aÿ1;A�
b � fr�d1a=d2;A�
b � �d1=d2�fr�a;A�

b � a
a � fr�b;Aÿ1�
g � fr�a;A2A1�
b � fr�a;Aÿ12 A1�
b � fr�a; IAI�
b � fr�a;AD�
b � fr�a;DA�
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concrete cases of symplectic planimetry:

EG : jNj � 1; a1 � 0; GG : jNj � 0; a1 � 1; a2 � p
2

;

MG : jNj � ÿ1; a1 � 0 : �A:64�

In summary, the initial postulate of unimodular base 2-
matrix is fairly constructive for analytic specification of
symplectic planimetry models, because it additionally takes
into consideration the properties of autocongruence of a
skew-symmetric 2-matrix.
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