
Similitude, or likeness, in the cardiovascular system of
mammals has been discussed previously from an engineering
perspective (Dawson, 1991). The approach involved the
development of theoretical scaling laws for the system from
considerations of the basic physical and mechanical processes
involved, and the use of these laws with experimental
measurements to demonstrate the similarity in the system for
all mammals. Recently, West et al. (West et al., 1997) have
considered the subject from the more abstract perspective of
hierarchical networks of branching tubes, and Banavar et al.
(Banavar et al., 1999) have considered the matter from an even
more general perspective of networks.

Theories of the latter kinds may ultimately provide a broad
understanding of restraints on the cardiovascular system when
viewed as a complex delivery system, but detailed knowledge
of how the restraints are implemented by mammals will continue
to require study of the system from basic physical
considerations. For this reason, and in view of the continuing
interest in the subject, it seems worthwhile to reconsider here the
development of the scaling laws of the cardiovascular system
with particular emphasis on their experimental basis and their
implications regarding the basic workings of the system.

Historical perspective
Similitude in the physiological processes of mammals has

been a subject of interest in biology for more than 150 years.
The rate of heat production of resting mammals and the
associated rate of oxygen consumption and cardiac
performance have received considerable attention. Early
speculations (Sarrus and Remeaux, 1838) on the equality of
heat production and heat loss led to the theoretical
development of allometric (non-proportional) expressions
relating the rates of heat production and oxygen consumption
to mammal mass raised to the power 2/3. Measurements on
dogs of various sizes (Rubner, 1883) provided apparent
confirmation of this simple theory. However, further work in
the first half of the twentieth century, with mammals ranging
in size from the mouse to the elephant, indicated that the theory
and associated allometric relationships were not those that
applied best. Kleiber (Kleiber, 1932) and Brody and Procter
(Brody and Procter, 1932) found, from experimental
measurements, that the rates of heat production and oxygen
consumption vary essentially as mammal mass raised to the
power 3/4.

Other important measurements of physiological similarity
were reported during this period. For example, Clark (Clark,
1927) showed that the heart rate of mammals varies essentially
with mammal mass raised to the power −1/4. Woodbury and
Hamilton (Woodbury and Hamilton, 1937) and Gregg et al.
(Gregg et al., 1937) showed that the systolic and diastolic
blood pressures of mammals are independent of mammal size,
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Scaling laws governing the cardiovascular system of
mammals are discussed in the present review in a manner
emphasizing their experimental basis. Specific attention is
given to the well-known experimental laws requiring the
rate of oxygen consumption and the heart rate of mammals
to vary with body mass raised to the powers 3/4 and −1/4,
respectively. This review involves reconsideration and
further discussion of the previous work of the writer in
which these and other scaling relationships were developed
from fundamental considerations. The predicted scaling
laws remain unchanged from the earlier work, but
alternative assumptions leading to the laws are used so as

to provide additional insight. The scaling laws are shown
to have their origin in the basic design of the cardiovascular
system and in the basic processes involved in its working.
Modification of the design assumptions of the system to
account for known differences in the relative heart masses
of mammals and birds is shown to lead to the scaling laws
for rate of oxygen consumption and heart rate of birds.

Key words: allometric relationship, cardiovascular system,
similitude, scaling law, mammal, bird, rate of oxygen uptake, heart
rate.
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and Brody (Brody, 1945) showed that the heart mass and blood
volume of mammals vary directly with body mass.

Significant experimental studies of the similarity in
mammals continued during the last half of the twentieth
century. Schmidt-Nielsen and Larimer (Schmidt-Nielsen and
Larimer, 1958), for example, measured the oxygen partial
pressure in the blood of mammals and showed decreasing
pressure with increasing mammal size. Holt et al. (Holt et al.,
1968) examined cardiac output in detail and showed that it
varies essentially as body mass raised to the power 3/4, and
Gehr et al. (Gehr et al., 1981) studied the respiratory system
of mammals and showed that the net capillary volume was
proportional to body mass.

Interestingly, the 3/4 power law for rate of oxygen
consumption received renewed attention near mid-century
when Hemmingsen (Hemmingsen, 1960) reported results
indicating that the law applies not only to mammals but also
to cold-blooded animals, to unicellular organisms and, perhaps,
even to more general forms of life. The rate of oxygen
consumption of birds was also discussed in terms of the 3/4
power law (Lasiewski and Dawson, 1967). The emerging
implication was that the 3/4 power relationship for rate of
oxygen consumption represented something approaching a
general rule of biology. However, such an interpretation did
not meet with universal acceptance. Prothero (Prothero, 1986),
Patterson (Patterson, 1992) and Riisgard (Riisgard, 1998),
among others, provided strong evidence countering the claim
that the 3/4 power law is a basic feature of biology. Bartels
(Bartels, 1982) and Heusner (Heusner, 1991) questioned the
fundamental standing of the law for mammals, and Bennett and
Harvey (Bennett and Harvey, 1987) questioned its application
to birds.

With regard to theoretical developments, the early work
of Lambert and Teissier (Lambert and Teissier, 1927) is
noteworthy because it attempted to place the subject within the
broad framework of dimensional analysis and modeling theory.
Predictions from this theory included the results that the rate
of oxygen consumption and cardiac output must vary with
mammal mass raised to the power 2/3, and that heart rate must
vary with mammal mass raised to the power −1/3. The
predictions differed somewhat from the developing body of
experimental measurements that indicated 3/4 and −1/4 scaling
laws for rate of oxygen consumption and heart rate,
respectively. However, the theoretical nature of the work
allowed it a degree of longevity. The work continued to be
regarded into the 1970s, and beyond, as the best available
theoretical description of the scaling of the cardiovascular
system of mammals (Kenner, 1972).

This was, in large part, the situation that existed some 10
years ago when the present writer first considered the subject
(Dawson, 1991). The application of conventional scaling
procedures to the cardiovascular system was investigated and
shown to be inadequate because of competing scaling laws
dictated by the necessary presence in the theory of both the
elasticity of the heart muscle and the viscosity of the blood. If
viscosity was ignored, contrary to its importance in the system,

the scaling scheme of Lambert and Teissier (1927) resulted,
with cardiac output predicted to vary as a 2/3 power law and
heart rate as a −1/3 power law. In contrast, if elasticity was
neglected rather than viscosity, the resulting scaling rules
required the conditions that cardiac output must scale directly
with mammal mass and that heart rate must remain unchanged
with changing mammal mass.

In this same work, the present writer considered the subject
from the more general perspective of non-uniform scaling, i.e.
scaling where major descriptive aspects of the system are
subject to different geometric scale factors (Dawson, 1991).
The analysis started with a simplified representation of the
cardiovascular system as a closed system having heart,
capillaries and connecting vessels between the two. Elastic
effects were restricted to the heart, inertial effects were
assumed to be dominant in the connecting vessels and viscous
forces were assumed to be dominant in the capillaries,
consistent with conditions expected from mechanics. Heart
mass and blood volume were assumed to be proportional to
mammal body mass. Developments followed systematically as
described below.

(a) Details of heart pumping were considered and basic
modeling arguments were used to establish the requirement
that blood pressure must be independent of mammal mass.
Three fundamental relationships were also developed
involving the dimensions of the connecting vessels and the
dimensions and number of capillaries.

(b) Two additional relationships were introduced, one
concerning cell diffusion and the other concerning cardiac
contraction. These were combined with the above results to
show that the radius and length of the connecting vessels scale
with mammal mass raised to the powers 3/8 and 1/4,
respectively, and that capillary radius, length and number scale
with mammal mass raised to the powers 1/12, 5/24 and 5/8,
respectively.

(c) These scaling laws were shown to lead, in turn, to the
requirements that rate of oxygen consumption and cardiac
output scale with mammal mass raised to the power 3/4 and
that heart rate scales with mammal mass raised to the power
−1/4.

The first assumption of b, involving cell diffusion, used the
conditions of scale-invariant diffusion coefficient and driving
force. The second assumption of b, concerning cardiac
contraction, involved an experimental power-law relationship
connecting contraction speed and cardiac fiber diameter. Small
changes in these conditions would, of course, cause small
changes in the predicted results. This work is continued in the
present review, with further attention to the experimental basis
for the description of the system.

Scope of this review
The purpose of the present review is to reconsider in detail

the earlier development (Dawson, 1991) of scaling laws for the
cardiovascular system of mammals, with emphasis on the
experimental basis for the laws and on an increased
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understanding of their origin and their application. The basic
model used for the cardiovascular system will be the same as
employed earlier. However, instead of starting the discussion
at the cardiac response level, the starting point will be the
condition that blood pressure in mammals is independent of
body mass. This is a derived result from the original work and
also a widely accepted experimental fact. Its use allows some
simplification in the development of the scaling laws.

Starting at this level, three relationships will be developed
between the radius and length of the main connecting vessels
of the system and the radius, length and number of the
capillaries, as in the earlier work (Dawson, 1991). The two
additional relationships needed to solve the scaling laws for
these variables will, however, be chosen differently from in the
original development.

Two cases will be considered. In the first case, the 3/4 power
law for the rate of oxygen consumption and the −1/4 power
law for heart rate will be employed, and these will be shown
to lead to the same vascular scaling laws as found in the earlier
work. In the second case, two theoretical relationships
involving oxygen utilization and oxygen transfer will be
employed as the two additional relationships required. These
will also be shown to lead to the same vascular scaling laws
as earlier. In addition, this development will be extended to
obtain, respectively, the 3/4 and −1/4 scaling laws for the rate
of oxygen consumption and heart rate. The alternative
developments are intended to provide increased confidence in
and understanding of the scaling laws for the system.

The general scheme of the present approach is illustrated in
Fig. 1 and contrasted with that of the previous work. The steps
and assumptions shown include identification of relationships
based on experiment. These involve a cell diffusion law and a
cardiac contraction law in the earlier work, the heart rate and
oxygen rate laws and an oxygen pressure law in the first case
considered here, and the oxygen pressure law in the second
case considered here.

Scaling laws for other physiological processes of mammals
will also be considered in this review, and additional new laws
will be developed. The connection between the scaling laws
for mammals and birds will be established, and the role of the
3/4 scaling law for rate of oxygen consumption as an
experimental representation, rather than a fundamental law of
biology, will be discussed.

The cardiovascular system
The cardiovascular system of mammals consists broadly of

the heart, the blood and the blood vessels. In many respects, it
is like a mechanical system and, in its simplest engineering
form, may be considered as two pumps in series (the left and
right sides of the heart) with connecting vessels (the arteries
and veins) directing the working substance (the blood) to and
from exchange devices (the capillaries) for transfer of products
in support of life-sustaining activities.

A simplified representation of the system is shown in Fig. 2.
As indicated, the heart consists of four chambers, the left

atrium and left ventricle and the right atrium and right
ventricle. The left atrium collects oxygen-enriched blood
returning from the lungs, and the left ventricle pumps this
blood through systemic arteries to the systemic capillaries of
the body for exchange of oxygen and other products. The right
atrium collects this blood on return through systemic veins, and
the right ventricle pumps this blood through pulmonary arteries
to the pulmonary capillaries of the lungs for recharge of
oxygen and transfer of gases. Pumping, by contraction, of the
left and right ventricles occurs at the same time, so that
the blood in the respective sides of the heart is forced
simultaneously to the body and lungs.

The essential parts of the cardiovascular system can be seen
to be the heart, the blood, the systemic and pulmonary
capillaries and the connecting vessels between the left and right
sides of the heart and the capillary beds. This idealized system,
or model, forms the basis for the development of scaling laws
for the system as discussed here. The connecting vessels to
and from each side of the heart will be regarded as single
macroscopic vessels, and the capillary beds will each be
regarded as a parallel array of individual microscopic vessels.
Additional properties will be ascribed to the model as indicated
by measurements from mammals ranging in size from the
mouse to the elephant.

In the idealized model, the characteristic radius and length
of the connecting vessel (aorta) are denoted by ra and La,
respectively, and the characteristic radius, length and number
of the capillary vessels in each capillary bed are denoted by rc,
Lc and nc, respectively. In addition, the ventricles (pumping
chambers) of the heart are regarded as approximately
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cylindrical in form, with an average characteristic radius
denoted by a, and with an average characteristic length and
wall thickness denoted by l and h, respectively. An objective
of the present work is to discuss the scaling laws that must
apply to these descriptive variables when considering their
values for mammals of different sizes. An additional objective
is to discuss these results in terms of the actual scaling laws
that exist for various physiological processes of mammals and
thus contribute to a physical understanding of their origin.

Basic similarity relationships
The total blood volume in mammals is known from extensive

measurements to vary directly with their body mass (Brody,
1945). In the model under consideration, this means that the
sum of the blood volume in the heart, the connecting vessels
and the capillaries must vary directly with mammal mass. If the
sum is proportional to body mass, the individual parts can also
be expected to be proportional to body mass. Thus, for the
dimensions of the ventricles, the connecting vessels and the
capillaries, the following volume relationships may be written:

a2l ∝ W, (1a)

ra2La ∝ W (1b)
and

ncrc2Lc ∝ W , (1c)

where W denotes mammal mass and where the symbol ∝
denotes proportional variation under change in mammal mass.

The first relationship requires that ventricular volumes be
proportional to mammal mass, the second requires that the
volume of the connecting vessels be proportional to mammal
mass, and the third requires that the net volume of the
capillaries be proportional to mammal mass.

Measurements (Holt et al., 1968) for the end-diastolic
volumes of the left and right ventricles of mammals ranging in
size from rat to cow provide direct experimental support for
the proportional relationship for ventricular volume
(relationship 1a). Also, measurements reported by Gehr et al.
(Gehr et al., 1981) for the net volume of pulmonary capillaries
for a similar range of mammals provide direct support for
the proportional relationship for total capillary volume
(relationship 1c). And measurements reported by Clark (Clark,
1927) for the aortic cross-sectional flow area, when combined
with typical measurements reported by Noordergraaf et al.
(Noordergraaf et al., 1979) for aortic length, provide support
over a wide range of mammal sizes for the proportional
relationship for the connecting vessels (relationship 1b).

Scaling laws for heart dimensions
In addition to blood mass, it is also well established that the

empty heart mass of mammals varies directly with mammal
mass (Brody, 1945). The same is true for the ventricles (Holt
et al., 1968). Thus, assuming the same cardiac tissue mass per
unit volume for all mammals, the mass relationship for the
ventricles is a2h+alh∝ W, where the first term is proportional
to the mass of the ends and the second to the mass of the lateral
portion. As with relationships 1a–c, each of the two products
in this last relationship can be considered proportional to
mammal mass. The resulting two relationships, together with
equation 1a, then require the following scaling relationships for
the dimensions of the ventricles:

a ∝ W1/3, (2a)

l ∝ W1/3 (2b)
and

h ∝ W1/3. (2c)

Measurements providing experimental support for the
second of these relationships, involving ventricular length l,
have been given by Clark (Clark, 1927) for the lengths of the
left ventricle of mammals ranging in size from the mouse to
the horse. This result, together with the known validity of
relationship 1a in the form a2∝ W/l, establishes the validity of
relationship 2a for ventricular radius a. The fact that
ventricular mass is proportional to mammal mass then finally
confirms the validity of relationship 2c for ventricular
thickness h. In particular, the foregoing mass relationship on
which relationships 2a–c are based may be written as
h∝ W/(a2+al). With a and l varying as mammal mass raised to
the power 1/3, h must also vary in this manner.

Scaling relationships from blood flow
The derivation of the scaling laws for the dimensions of the
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Fig. 2. Illustration of the cardiovascular system of mammals. LA, left
atrium; LV, left ventricle; AO, aorta; SA, systemic arteries; SC,
systemic capillaries; SV, systemic veins; VC, venae cavae; RA, right
atrium; RV, right ventricle; PA, pulmonary arteries; PC, pulmonary
capillaries; PV, pulmonary veins.



blood vessels presents more of a problem than that for the
heart ventricles. Relationships 1b,c provide two connections
between the five vascular variables ra, La, rc, Lc and nc. Three
additional relationships are therefore needed to define the
scaling laws for these variables. To assist in identifying these
relationships, the mechanics of ventricular pumping and blood
flow can be examined. For simplicity in this regard, only blood
flow from the left side of the heart will be considered. Similar
considerations will apply to the right side.

The underlying principle to be employed here is that the
maximum blood pressure due to the pumping of the blood out
of the ventricles must be the same for all mammals. This is a
similarity requirement of mammals that can be established
from general considerations of heart elasticity and
cardiovascular response (Dawson, 1991), but may also be
regarded as a fundamental experimental fact on the basis of
previous measurements (Woodbury and Hamilton, 1937;
Gregg et al., 1937; among others).

Stroke volume

Consider first the radial contraction of the left heart ventricle
during its pumping cycle. Let Um denote the maximum inward
movement of the walls of the ventricle. The maximum volume
of blood Bm squeezed into the connecting vessel may then be
represented by the proportional relationship:

The volume Bm denotes the stroke volume of the ventricle and
has been shown by measurement (Holt et al., 1968) to vary
directly with mammal mass. Thus, in view of relationships
2a–c, the displacement Um must, like a, l and h, vary with
mammal mass raised to the power 1/3. Relationship 3 can then
be written as the simpler expression Bm∝ alUm.

Resistance to blood flow

The blood volume pumped into the connecting vessel by the
ventricle must, of course, force the blood already in the vessel
and in the capillaries to move forward. If there were no
resistance to the blood movement, this displacement would take
place with no increase in the blood pressure in the ventricle.
Such, however, is not the case. The blood flow is resisted by
inertial force in the connecting vessel, where viscous resistance
is negligible, and by viscous force in the capillaries, where
inertial resistance is negligible. Each of these forces causes a
pressure increase in the blood. For the maximum pressure to be
the same for all mammals, the maximum pressure from each
force must be independent of mammal mass.

The maximum pressure PI from the inertial resistance of
blood flow in the connecting vessel is related in a proportional
sense to the density of the blood ρ and its maximum
acceleration Am in the connecting vessel through the product
ρLaAm. The acceleration is also related in a proportional sense
to the maximum displacement Um of the ventricle through the
ratio alω2Um/ra2, where ω denotes cyclic heart rate. This ratio

follows directly from the condition that blood flow out of the
ventricle must equal blood flow in the connecting vessel. The
following relationship may thus be written for the blood
pressure from inertial resistance:

Now, the blood density ρ is the same for all mammals, the
product a2l is proportional to mammal mass and the ratio Um/a
is independent of mammal mass. Hence, on using the
relationship 1b and requiring PI to be independent of mammal
mass, this last relationship is found to provide the simple
scaling law:

La ∝ ω −1 , (5)

which requires, on considering different mammal sizes, that the
length of the connecting vessels vary inversely with heart rate.

Interestingly, the validity of this last relationship was implicitly
confirmed in an earlier independent work (Noordergraaf et al.,
1979), in which wavelengths associated with the pressure pulses
in the aorta during heart beats were shown to be proportional to
aortic length. Such wavelengths are inversely proportional to
heart rate and, hence, the aortic length was implicitly shown to
vary inversely with heart rate, as in relationship 5.

Attention may next be directed towards the viscous resistance
to blood flow in the capillaries. This resistance is well-known
in fluid mechanics and is representable by Poiseuille’s Law. The
resulting maximum pressure PV in the blood may be expressed
in proportional terms as the ratio µLcVm/rc2, where µ denotes
the viscosity of the blood and Vm denotes the maximum velocity
of the blood through each of the capillaries. In a manner similar
to that used for blood acceleration in connection with
relationship 5, the velocity may be related in proportional terms
to the maximum displacement of the ventricle by the ratio
alωUm/ncrc2. The pressure may then be expressed as:

The blood viscosity µ is the same for all mammals. Also,
the product la2 is proportional to mammal mass and the ratio
Um/a is independent of mammal mass, as noted above. On
using relationships 1 and 5, this last relationship thus provides,
for PV independent of mammal mass, the scaling relationship:

rc2nc2/3 ∝ ra2/3W1/3. (7)

It can be seen from the above that relationships 1b,c and 7
provide three relationships between the five variablesra, La, rc,
Lc and nc of the system. Two additional relationships are thus
still needed for determination of the scaling laws of each. Once
these are known, relationship 5 can be used to determine the
scaling law for heart rate.

Scaling laws for blood vessels – first approach
The two additional similarity relationships needed for

establishing the scaling laws for the vascular system may be

(6)PV ∝
µla2LcωUm

ancrc4
.

(4)PI ∝
ρla2Laω2Um

ara2
.

(3)Bm ∝ alUm 1 −








Um

a

1

2
.
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found from general theoretical considerations, or they may
come directly from generally accepted experimental
relationships. The latter approach will be employed first,
followed by a discussion of alternative theoretical
relationships.

It is well known from measurement that the heart rate
of mammals can be considered to vary approximately with
mammal mass raised to the power−1/4 and that the rate
of oxygen consumption V

.
O∑ can be considered to vary

approximately with mammal mass raised to the power 3/4.
These variations are illustrated in Fig. 3 using some of the
original data (Brody, 1945). Here, logarithmic axes are used,
so that data of the form y=AWn plot as a straight line with slope
equal to n and with value y at W=1 equal to the value A. The
solid lines in the plots indicate predictions from the indicated
relationships for heart rate and rate of oxygen consumption.

The overall agreement shown in Fig. 3 between
measurements and the power-law relationships can be seen to
be good. However, the representations must be considered
approximate as a result of more recent studies. For example,
Bartels (Bartels, 1982) has demonstrated deviations from the
3/4 power law for V

.
O∑ for very small mammals, and Heusner

(Heusner, 1991) has reported deviations on the basis of
detailed statistical analyses of numerous measurements.

In the present work, the 3/4 power law for rate of oxygen
consumption and the −1/4 power law for heart rate will
accordingly be regarded as good average representations of
measurements over the size range from mouse to elephant. The
following relationships may thus be written as experimental
scaling laws describing the workings of the cardiovascular
system of mammals:

ω ∝ W−1/4, (8a)

V
.
O∑ ∝ W3/4. (8b)

The first of these relationships may be used directly with
relationship 5 to establish the scaling law for the length of the
connecting vessels, and this may then be used with relationship
1b to establish the scaling law for the radius of these vessels.
The results may be expressed as:

La ∝ W1/4, (9a)

ra ∝ W3/8. (9b)

These scaling laws are the same as those derived earlier from
alternative considerations (Dawson, 1991). Typical values
reported by Noordergraaf et al. (Noordergraaf et al., 1979) for
the length of the aorta of mammals provide a scaling exponent
of 0.30, in fair agreement with the 1/4 (0.250) exponent of
relationship 9a. Detailed measurements (Clark, 1927) of aortic
flow area provide an exponent of 0.72, which converts to an
exponent of 0.36 for the aortic radius, in good agreement with
the 3/8 (0.375) exponent of relationship 9b.

Relationship 8b requires some additional consideration of
oxygen utilization before application. Oxygen utilization must
equal oxygen transfer from the systemic capillaries and also
oxygen transfer to the pulmonary capillaries. Total oxygen
transfer rate from, or to, a capillary is governed by the well-
known diffusion relationship for gases and is proportional to
the product of (i) the difference in average oxygen partial
pressure inside and immediately outside the capillary and (ii)
the capillary surface area. It is also inversely proportional to
capillary wall thickness, i.e. the difference between the outside
and inside radii of the capillary. Basic similarity considerations
suggest that the inside and outside oxygen pressures are
proportional to one another under change of scale. The same
is expected for the capillary radii. Using these conditions, the
resulting proportional relationship for net oxygen transfer then
involves simply the product of the average partial pressure in
the capillaries Po, their number nc and their length Lc, that is:

V
.
O∑ ∝ PoncLc . (10)

In using this last relationship, it is, of course, necessary to
know how, if at all, the oxygen partial pressure in the blood
varies with mammal size. Fortunately, Schmidt-Nielsen and
Larimer (Schmidt-Nielsen and Larimer, 1958) have made
extensive measurements of this pressure for a wide range of
mammal sizes, and their results have been shown to be in general
agreement with the following relationship (Dawson, 1991):
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V
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O∑ with mammal mass W (data from Brody, 1945).



Po ∝ W−1/12. (11)

The adequacy of the relationship is illustrated in Fig. 4 for
typical measurements. More extensive comparisons have been
given previously (Dawson, 1991). Using relationships 10 and
11 and relationship 8b, the scaling relationship for the product
is accordingly:

ncLc ∝ W5/6. (12)

On combining this relationship with relationship 1c, the
scaling law for radius may be determined. The scaling law for
capillary length Lc and number nc may then be determined from
relationships 7 and 12 with relationship 9b. In this way, the
following scaling laws for the capillary vessels are found:

rc ∝ W1/12, (13a)

Lc ∝ W5/24 (13b)
and

nc ∝ W5/8. (13c)

These scaling laws are identical to those derived earlier
using alternative arguments (Dawson, 1991) rather than the
experimental laws of relationships 8a,b. Figs 5 and 6
illustrate the general validity of the relationships using data
for capillary radius rc (Fig. 5) and net length ncLc (Fig. 6), as
determined from measurements (Gehr et al., 1981) of the
volume and surface area of the pulmonary capillaries
(Dawson, 1991).

The data for the capillary radius show considerable scatter,
but the trend is in agreement with that expected from
relationship 13a. A best-fit equation to the data provides a
scaling exponent of 0.079, in good agreement with the 1/12
(0.083) exponent of relationship 13a. The data for the net
capillary length is likewise in good agreement with the
prediction from relationships 13a–c. A best-fit to these data

provides an exponent of 0.85, in good agreement with the
exponent of 5/6 (0.833) given by relationships 13b,c.

Scaling laws for physiological processes
The scaling laws of relationships 9 and 13 for the vascular

system provide a basis for the scaling laws of various
physiological processes of mammals. In particular, by starting
with these relationships and reversing the foregoing arguments,
the scaling laws for blood pressure, heart rate and the rate of
oxygen consumption can readily be established. The origin of
these well-known laws is thus seen to rest in the underlying
scaling laws for the vascular system. Additional scaling
relationships also follow from this description, as described
below.

The cardiovascular system of mammals 401

Fig. 4. Variation of oxygen partial pressure Po in the blood with
mammal mass W (data from Schmidt-Nielsen and Larimer, 1958).
1 mmHg=0.133 kPa.

Fig. 5. Variation of pulmonary capillary radius rc with mammal mass
W (data from Gehr et al., 1981).

Fig. 6. Variation of net length of the pulmonary capillaries ncLc,
where nc is capillary number and Lc is capillary length, with mammal
mass W (data from Gehr et al., 1981).



Cardiac output

In addition to the basic geometric scaling relationships for
blood vessels, the scaling law for cardiac output can be brought
within the framework of the description simply by noting that
it is determined by considering the product of stroke volume
and heart rate as represented by relationships 3 and 8a. The
result is that cardiac output must, like the rate of oxygen
consumption, scale with mammal mass raised to the power 3/4.
This law is in agreement with measured values (Holt et al.,
1968).

Urine output and nephra number

The scaling law for urine output of mammals may also be
brought within the framework of the present description. The
governing relationship is analogous to that of relationship 10
for oxygen transfer rate, except that the driving force is the
scale-independent blood pressure rather than the scale-
dependent oxygen partial pressure. Thus, the scaling law for
urine output is that for the product ncLc, and this is proportional
to mammal mass raised to the power 5/6. Analysis (Adolph,
1949) of various experimental measurements indicated a
scaling exponent of 0.82, in good agreement with the 5/6
(0.833) exponent expected here.

The scaling law for the variation in the number of
fundamental renal units in the kidneys of mammals, the
nephron units and the nephra numbers, may also be considered
with the present theory. These units consist of a set of
capillaries through which fluid is extracted and partially
reabsorbed to rid the body of waste water. Thus, considering
nephron architecture to be similar among mammals, with the
same number of capillaries in all such units, the number of
nephrons, for example, can be expected to scale directly as the
number of capillaries of the present theory, i.e. as mammal
mass raised to the power 5/8 (0.625). Interestingly, this is, in
fact, the case. Measurements and countings (Kunkel, 1930) at
Johns Hopkins, many years ago, provided nephra numbers for
mammals ranging in size from the mouse to the ox; and
Adolph (Adolph, 1949) later showed these to be described by
a best-fit power law involving mammal mass raised to the
power 0.62.

The agreement between the present theory and the
measurements of urine output and nephra number is important
not only in general terms but also because it provides specific
support for scaling relationships 13 for the systemic side of the
circulation. The results presented in Figs 5 and 6 provided this
experimental support for the pulmonary side of the circulation.
The indications are, therefore, that relationships 13 apply to the
capillaries of the body in general, as expected from the
theoretical development.

The average body cell

In a further study of scaling laws for physiological
processes, attention may be directed to the small amount of
average body tissue, or average body cell, serviced by a single
capillary. The mass of this tissue is evidently proportional to
the ratio W/nc, and, since mass is proportional to volume, its

characteristic length dimension ls is determined by the
relationship:

ls ∝ (W/nc)1/3, (14)

i.e. as mammal mass raised to the power 1/8.
In addition, since mammal mass and heart mass are

proportional under change of scale, the characteristic length
defined by relationship 14 is the same as that for heart tissue.
Thus, average body tissue and heart tissue may be considered to
be the same for the present purposes. The diameter of a cardiac
muscle fiber, for example, should therefore scale with mammal
mass in the manner of relationship 14. No measurements
presently exist to test this prediction, but the scaling law
indicates that a factor of more than 4 should be found between
such measurements for the mouse and the elephant.

Because of the similarity between average body tissue and
heart tissue, the cyclic rate of operation of average body tissue
may also be considered equal to that of cardiac tissue, i.e. equal
to the heart rate ω. Using this condition, the oxygen utilized
by the small amount of average body tissues per unit volume
in a cycle of operation may thus be expressed in the form:

where Ps denotes the oxygen partial pressure immediately
exterior to the tissue in the interstitial fluid. On using the
previously described scaling laws for V

.
O∑, nc, ω and ls, it can

easily be seen that the left-hand side of this relationship is
independent of mammal size, as may be expected from
physical considerations. The right-hand side of the relationship
must then also have this property. It can accordingly be seen
from the scaling laws for ls and ω that the partial pressure Ps

must be independent of mammal size. This is in contrast with
the partial pressure in the blood, which varies with mammal
mass in the manner of relationship 11, but is consistent with
general diffusion processes in tissues.

This last result can be used to infer the scaling relationship
for the spacing between a capillary and the tissue mass (or
average body cell) serviced by it. Assuming, in particular, that
the oxygen partial pressure decreases linearly from its value in
the capillary to zero at the center of the tissue mass, the
expression for the oxygen pressure at distance D from the
capillary is Po−PoD/ds, where Po denotes, as above, the partial
pressure in the capillary and ds denotes the spacing between
the capillary and tissue-mass center. The distance from
capillary to the outside surface of the tissue mass is ds−ls.
Substituting this for D in the above expression, the value of the
oxygen pressure Ps, at the surface is found to be Pols/ds. For
this to be independent of mammal size, it is therefore
necessary, from the scaling relationships for Po and ls, that the
spacing ds vary with mammal size raised to the power 1/24.
No measurements exist for this spacing at the present time.
However, the scaling law should be that for the spacing
between capillary and cardiac muscle fiber in mammals. The
spacing for the elephant, for example, should be approximately
1.6 times that for the mouse.

(15)∝
Psls

ωls3
V
.
O∑

ncωls3
,
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Of course, variation in spacing between capillary and tissue
mass for the purposes of oxygen diffusion would presumably
leave unchanged other diffusion processes that are associated
with life-sustaining activities of the tissue mass.

Cardiac contraction

The scaling law of relationship 14 for the characteristic
length of an average body cell allows investigation of the
fundamental processes involved in heart contraction. In
particular, contraction occurs as a result of the propagation of
an action potential over the length of the heart. The net time
for propagation must be proportional to heart length and
inversely proportional to propagation speed. This time must
also be proportional to the time between heart beats for
different mammals, i.e. the reciprocal of heart rate ω. The
appropriate relationship is ω∝ C/l, where C denotes
propagation speed and l denotes ventricular length.

Now, the propagation speed C is known from measurements
on nerve fibers to vary with the diameter of the fiber carrying
the signal. The relationship is generally assumed to be a power
law with an exponent in the range 0.5–1.0 (Jack et al., 1975).
With b denoting the value of the exponent, and the fiber
diameter identified with the characteristic cell length of
relationship 14, the proportional relationship for the process
may therefore be written as ω∝ lsbl−1. Using the scaling
relationships from the present theory, it can readily be seen that
the exponent b must have the value 2/3. The cardiac
contraction speed is thus predicted to vary with cardiac fiber
diameter according to a 2/3 power law. No experimental
measurements presently exist to confirm this result. Since,
according to the present theory and relationship 14, cardiac
fiber diameter varies with mammal mass raised to the power
1/8, the contraction speed in the heart muscle of an elephant
can be expected to be approximately 2.6 times faster than that
in the mouse.

Scaling laws for blood vessels – second approach
The two empirical relationships 8a,b describing scaling laws

for heart rate and the rate of oxygen consumption may be
replaced by theoretical relationships for the purposes of
deriving these scaling laws from basic concepts, as well as
those for the vascular system. As indicated above, earlier
theoretical work of this kind relied on fundamental
considerations of cell diffusion and cardiac contraction
(Dawson, 1991). The present discussion involves consideration
of the oxygen consumption of tissue serviced by a capillary
and consideration of oxygen transfer to the tissue. The two
assumptions are based on the previous discussion of average
body cell and can be expressed as follows.

(a) The oxygen utilization of an average body cell per
volume in a cycle of operation is the same for all mammals,
i.e. Psls/ωls3∝ W0.

(b) The oxygen transferred to an average body cell per
volume in a cycle of operation is the same for all mammals,
i.e. PoLc/ωls3∝ W0.

The additional assumptions to be used here may be
summarized as follows.

(c) Relationships 1b,c, requiring blood volumes in the
connecting vessels and capillaries to be proportional to
mammal mass.

(d) Relationship 5, requiring blood pressure in the
connecting vessel to be independent of mammal size.

(e) Relationship 7, requiring blood pressure in the capillaries
to be independent of mammal mass.

(f) The condition that the partial pressure of oxygen Ps at the
surface and within the interior of an average body cell is
independent of mammal mass.

(g) The condition that the partial pressure of oxygen in the
blood varies with mammal mass raised to the power −1/12.

(h) Net rate of oxygen consumption is determined by the
product of oxygen partial pressure in the blood, the number of
capillaries and their length.

The internal consistency of each of these assumptions can
be verified using the foregoing solution for the scaling laws of
the vascular system and the experimental laws for heart rate
and the rate of oxygen consumption. The objective here is to
show that these assumptions can be used alone to derive the
scaling laws for the system.

Assumptions a and f for oxygen utilization provide the
general relationship ωls2∝ W0. Using relationship 5 of
assumption d expressing heart rate in terms of vessel length
and relationship 14 defining ls in terms of capillary number,
this relationship may be written as:

nc2/3 ∝ La−1W2/3, (16)

which provides the first of the two theoretical relationships
required.

Assumptions b and g for oxygen transfer, relationship 5 of
assumption d relating ω to La, and relationship 14 defining ls
in terms of nc, provide the relationship W−1/12Lc∝ La−1W/nc.
Using relationship 1c of assumption c for capillary volume,
this result may also be written as:

rc2 ∝ LaW−1/12, (17)

which provides the second of the theoretical relationships
required.

On using these last two relationships with relationships 1b,c
of assumption c, and relationship 7 of assumption e, the full
set of five scaling relationships for the vascular system can now
be determined without the use of the empirical relationships
for heart rate and the rate of oxygen consumption.

In particular, by substituting relationships 16 and 17 into
relationship 7, the scaling law for ra can be obtained.
Relationship 1b then provides the scaling law for La. The
scaling law for rc may next be determined from relationship 17
and that for nc from relationship 16. Finally, the scaling law
for Lc can be determined from relationship 1c. These laws, so
found, are, in fact, identical to those already determined here
and in the earlier work of the writer (Dawson, 1991), namely
the two relationships 9 governing the scaling of the length and
radius of the connecting vessels and the three relationships 13
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governing the scaling of the radius, length and number of the
capillary vessels.

Heart rate and rate of oxygen consumption

With the above results, it can be seen that the scaling law
for the heart rate is now determined theoretically from
relationship 5 of assumption d to be the well-known −1/4 law.
The scaling law for the rate of oxygen consumption is now also
determined theoretically from assumption g and relationship
10 of assumption h be the well-known 3/4 law.

These last results are significant in that they demonstrate that
the origin of the 3/4 law for the rate of oxygen consumption
rests in the basic design and operation of the cardiovascular
system. The only direct experimental relationship used in the
derivation is that of assumption g, relating oxygen partial
pressure in the blood to mammal mass. If this relationship were
changed slightly, as might be permitted by the measurements,
a slight deviation from the predicted 3/4 power law would
result. For example, if the −1/12 relationship were assumed
instead to be a −0.09 relationship, the scaling law for the rate
of oxygen consumption would become a 0.73 law rather than
the 3/4 power law. This indicates, of course, that the 3/4
power law predicted in the present work is a convenient
representation and not a fundamental feature of the theory,
consistent with the work of Bartels (Bartels, 1982) and
Heusner (Heusner, 1991), where deviations from the 3/4 power
law were determined from statistical study of measurements.

In connection with the above remarks, it is interesting to note
also that, if the oxygen pressure in the blood were assumed to
be independent of mammal size, the theory would then require
that heart rate be the same for all mammals and that the rate
of oxygen consumption should vary directly with mammal
mass. Capillary radius and length would also be required to be
independent of mammal size. Such results are, of course,
inconsistent with measurements and illustrate again the
sensitivity of the performance of the system to its components
and to physiological processes.

Restraints on the system when viewed as a delivery system
(as in the recent theories, e.g. West et al., 1997; Banavar et al.,
1999) may ultimately provide reasons for the design of the
cardiovascular system being as it is. However, before that
possibility can be assessed, such descriptions need to be
generalized to allow variation of capillary dimensions with
mammal mass. At present, existing theories assume scale-
invariant capillary dimensions.

Previous work of the writer
It is worthwhile in this review, and here in particular, to note

the details of the two assumptions used in place of a and b in
the original work of the writer (Dawson, 1991). As noted
above, these involve consideration of cell diffusion and cardiac
contraction. Cell diffusion referred not only to oxygen
diffusion but to any of the life-sustaining diffusion activities
of an average body cell. With scale-invariant diffusion
coefficient and driving force envisioned, the resulting

relationship involved the heart rate ω and the characteristic
length ls of an average body cell in the form ωls2∝ W0, as is
also the case here for oxygen diffusion with assumptions a
and f above. Cardiac contraction was considered in terms of
ventricular length l and the propagation speed of contraction.
The resulting relationship, as discussed above, involved heart
rate and cell length in the form ω∝ ls2/3l−1, where the exponent
2/3 in this relationship was chosen to be consistent with
experimental measurements. With these two relationships used
in place of assumptions a and b above, the scaling laws for the
vascular system and rate of oxygen consumption described
here can also be established.

A variation of the exponent 2/3 for ls in the above
relationship for cardiac contraction will, of course, lead to a
deviation from the predicted 3/4 law for the rate of oxygen
consumption. This was noted in the original work, such that if
the exponent 2/3 were changed to 1/2, the predicted law for the
rate of oxygen consumption would become a 0.73 power law
rather than the 3/4 power law.

It is also of interest to note, from the earlier work, the
observation that the general diffusion relationship in the form
ω∝ ls−2 provides an explanation as to how heart rate increases
with decreasing mammal size. With ls∝ W1/8, as in this work,
the heart rate is predicted to follow a −1/4 law, as required from
measurement. Moreover, the smaller the mammal, the smaller
the cell – and hence the faster the diffusion process and the
resulting heart rate.

Similarity of birds – a brief study
The fact that birds have a four-chambered heart and a closed

circulatory system similar to that of mammals suggests the
advisability of examining the application of the present theory
to birds. Early work (Brody and Procter, 1932) indicated that
resting rate of oxygen consumption of birds varied essentially
as a 2/3 power relationship with body mass, in contrast with
the essentially 3/4 power relationship found by them for
mammals. Lasiewski and Dawson (Lasiewski and Dawson,
1967) divided birds into two size groups (passerine and non-
passerine species) and showed that the rate of oxygen
consumption of each group was proportional essentially to
body mass to the power 3/4, but with different proportional
coefficients. A 2/3 power law was, however, indicated when
both groups were considered together. More recently, Bennett
and Harvey (Bennett and Harvey, 1987), using a larger
database and more detailed methods of analysis, argued
persuasively that no such natural division exists between
species of birds and that a 2/3 power relationship for the rate
of oxygen consumption provides the appropriate description.

If birds followed the 3/4 power law for oxygen consumption
(as indicated by Lasiewski and Dawson, 1967), the workings
and similarity of their cardiovascular system would be the
same as described by the present theory for mammals.
However, if they follow the 2/3 power law (as indicated by the
work of Bennett and Harvey, 1987), then some modification is
required. Taking the latter position, a clue for the modification
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can be found in the work of Calder (Calder, 1968) and
Lasiewski and Calder (Lasiewski and Calder, 1971) in which
the heart mass Wh and heart rate ωb of birds were shown to
scale according to the relationships:

Wh ∝ W0.91, (18a)

ωb ∝ W−0.23. (18b)

Thus, unlike mammals, heart mass is not proportional to body
mass, and the heart rate does not follow the −1/4 power law
described above for mammals.

A reconsideration of the various parts of the present theory
will show that heart mass could equally well be substituted for
body mass in the various descriptions without loss of meaning.
For example, the condition that blood volume is proportional
to body mass could also have been stated relative to heart mass.
Of course, with mammals, no significant differences would
result because of the proportional relationship between heart
mass and body mass. If there were a difference, the use of heart
mass could be argued to be the more correct reference mass.
This is the case with birds, and the argument for replacing body
mass with heart mass is indeed persuasive on the basis of the
heart-rate law of relationship 18b. In particular, replacing body
mass with heart mass Wh in the relationship ω∝ W−1/4 and using
relationship 18a for birds, the heart rate is predicted to vary as
body mass raised to the power−0.23. This is in precise
agreement with the measured relationship, relationship 18b.

Applying the rule to other quantities in the theory, it is easily
found that, for birds, the rate of oxygen consumption and cardiac
output are predicted to scale with body mass to the power 0.68,
i.e. essentially to the power 2/3 (as indicated in the work of
Bennett and Harvey, 1987). The radius and length of connecting
vessels should now scale with body mass raised to the powers
0.34 and 0.23, respectively; and the capillary radius, length and
number should scale with body mass raised to the powers 0.076,
0.23 and 0.57, respectively. Also, the term ‘average body cell’
in the previous discussion should be replaced with ‘average
cardiac cell’. Interestingly, the oxygen partial pressure is now
predicted to scale with body mass raised to the power −0.076.
It is also reassuring to note that the 2/3 exponent associated
with contraction propagation and cardiac fiber diameter, as
considered above, remains unchanged in this modification.

Discussion
The scaling laws governing the cardiovascular system of

mammals have been derived here in a manner emphasizing the
experimental basis for the laws. A simple model of the
cardiovascular system has been used, consisting of the heart,
the capillaries and connecting vessels between the two. The
fundamental assumptions used in the first part of the work may
be summarized as follows: (i) blood volume is proportional to
mammal mass; (ii) heart mass is proportional to mammal mass;
(iii) blood pressure is independent of mammal size; (iv) stroke
volume is proportional to mammal mass; and (v) oxygen
partial pressure in the blood varies as mammal mass raised to
the power −1/12.

As a consequence of assumption i and the simplified model
of the cardiovascular system, the blood volumes in the heart,
the capillaries and the connecting vessels are all required to
be proportional to mammal mass. As a consequence of
assumptions i and ii, all linear dimensions of the ventricles of
the heart are required to scale with mammal mass raised to the
power 1/3. As a consequence of assumption iii, the blood
pressure in the connecting vessels and in the capillaries are
both required to be independent of mammal mass.

Three scaling relationships are also provided from
assumptions i and iii for the characteristic radius and length of
connecting vessels and the characteristic radius, length and
number of capillaries. Two additional relationships are
therefore needed to complete the solution for the scaling laws
for the characteristic dimensions of the vascular system. These
two additional relationships are first assumed in the present
review to be the well-known experimental relationships
requiring heart rate and rate of oxygen consumption to scale
with mammal mass raised to the powers −1/4 and 3/4,
respectively. The resulting five relationships, together with
assumption v, are then shown to yield scaling laws for the
vascular system requiring that the radius and length of
connecting vessels (main arteries) vary with mammal mass
raised to the powers 3/8 and 1/4, respectively, and that the
radius, length and number of capillary vessels vary with
mammal mass raised to the powers 1/12, 5/24 and 5/8,
respectively.

These laws are the same as those derived earlier by the writer
in a different manner (Dawson, 1991). In that work,
consideration of the mechanics of heart pumping and
ventricular contraction led to predictions for blood pressure
and stroke volume identical to those in assumptions iii and iv,
above. Also, in place of assumptions concerning heart rate and
rate of oxygen consumption, two conditions were originally
assumed for cell diffusion and cardiac contraction, as discussed
above.

To provide further insight into the physical origin of the
scaling laws for the vascular system, and for the heart rate and
rate of oxygen consumption, two additional relationships have
been presented here concerning oxygen consumption by the
small mass of average body tissue (or average body cell)
serviced by a capillary and the oxygen transfer by a capillary.
Additional assumptions used in this part of the work are that
oxygen transferred and used, per average body cell in a heart
cycle, are both independent of mammal size, and that the
partial pressure of oxygen in body tissue is independent of
mammal size. The associated two relationships, specifically
relationships 16 and 17, have been used in place of the
experimental scaling laws for heart rate and rate of oxygen
consumption to derive again the same scaling laws for the
vascular system as found from the use of the experimental
laws. The laws for heart rate and rate of oxygen consumption
also follow from this development.

The theory described in the present review for mammals has
been extended here to include the cardiovascular response of
birds. Differences in the scaling relationships of heart rate and
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the rate of oxygen consumption are shown to be attributable
directly to the non-proportional relationship between heart
mass and body mass for birds. The basic theory remains
unchanged.

Table 1 provides a summary of various scaling laws for
mammals from the present theory. Additional scaling laws are
noted in the text. All invite further experimental investigation.
In connection with the scaling laws in Table 1, it may be noted
that the scaling variation of capillary radius with mammal
mass is not very pronounced and that, without the aid of the
theory, the scatter in measurements, such as shown in Fig. 5,
could lead to the incorrect conclusion that capillary radius
does not vary with mammal size. A similar situation may also
exist with the red blood cells, whose radius might be expected
to be correlated with mammal mass in the same way as
capillary radius. The lack of observed correlationship of such
measurements (as reported by Schmidt-Nielsen, 1984, and
others) may therefore be due simply to scatter in
measurements and the small variations that actually exist.
Other factors such as cell flexibility may also enter and
minimize the correlationship. In any case, arguments for
scale-invariant capillary radius based on the scale-invariant
dimensions of red blood cells, as sometimes made, are not
persuasive in view of the present work and the results shown
in Fig. 5.

Concluding remarks
On the basis of the present review, and the earlier work of

the writer, it may be concluded that the well-known similitude
in the cardiovascular system of mammals has its origin in the
basic design of the system and in the basic physiological
processes involved in its workings. Ordinary dimensional
analysis and modeling theory are unable to reveal the laws

describing this similarity because of the implicit assumption of
uniform scaling. The use of extended theory for non-uniform
scaling of the system does not suffer from this limitation, and
the results, as discussed here, provide a degree of
understanding not otherwise available.

The non-uniform scaling theory leads to the conclusion
that the rate of oxygen consumption and heart rate scale with
mammal mass raised to the powers 3/4 and −1/4,
respectively. As discussed here, these are theoretical results,
based in part on representations of measurements of
cardiovascular processes. Slight variations in the
representations will lead to slight variations in predicted
results. The strict 3/4 power law for the rate of oxygen
consumption cannot therefore be viewed as fundamental
to the theory, but rather simply as a convenient form
representing measurements and the working of the system.
What appears fundamental is the design of the system and the
basic physiological processes involved.

The fact, discussed here, that the rate of oxygen
consumption of birds can be considered to follow a 2/3 scaling
law rather than the 3/4 scaling law for mammals suggests
further that the 3/4 scaling law is not a fundamental feature of
biology. It is also significant that the 2/3 scaling law for birds
can be obtained from the similarity laws of mammals by
replacing the proportional relationship between heart mass and
body mass for mammals with the non-proportional relationship
identified for birds.

The present review has attempted to provide some additional
understanding and insight into the basic similarity existing in
the cardiovascular system of mammals. Why the design of the
system is as it is has not been addressed and remains an
intriguing question in biology.

I am grateful to the referees for their many valuable
comments and criticisms of the original manuscript.
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