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Summary

Scaling laws governing the cardiovascular system of to provide additional insight. The scaling laws are shown
mammals are discussed in the present review in a manner to have their origin in the basic design of the cardiovascular
emphasizing their experimental basis. Specific attention is system and in the basic processes involved in its working.
given to the well-known experimental laws requiring the  Modification of the design assumptions of the system to
rate of oxygen consumption and the heart rate of mammals account for known differences in the relative heart masses
to vary with body mass raised to the powers 3/4 andl/4, of mammals and birds is shown to lead to the scaling laws
respectively. This review involves reconsideration and for rate of oxygen consumption and heart rate of birds.
further discussion of the previous work of the writer in
which these and other scaling relationships were developed
from fundamental considerations. The predicted scaling Key words: allometric relationship, cardiovascular system,
laws remain unchanged from the earlier work, but similitude, scaling law, mammal, bird, rate of oxygen uptake, heart
alternative assumptions leading to the laws are used so as rate.

Introduction

Similitude, or likeness, in the cardiovascular system obeen a subject of interest in biology for more than 150 years.
mammals has been discussed previously from an engineeriiigpe rate of heat production of resting mammals and the
perspective (Dawson, 1991). The approach involved thassociated rate of oxygen consumption and cardiac
development of theoretical scaling laws for the system fromperformance have received considerable attention. Early
considerations of the basic physical and mechanical processgseculations (Sarrus and Remeaux, 1838) on the equality of
involved, and the use of these laws with experimentaheat production and heat loss led to the theoretical
measurements to demonstrate the similarity in the system fdevelopment of allometric (non-proportional) expressions
all mammals. Recently, West et al. (West et al., 1997) hauvelating the rates of heat production and oxygen consumption
considered the subject from the more abstract perspective @ mammal mass raised to the power 2/3. Measurements on
hierarchical networks of branching tubes, and Banavar et alogs of various sizes (Rubner, 1883) provided apparent
(Banavar et al., 1999) have considered the matter from an eveanfirmation of this simple theory. However, further work in
more general perspective of networks. the first half of the twentieth century, with mammals ranging

Theories of the latter kinds may ultimately provide a broadn size from the mouse to the elephant, indicated that the theory
understanding of restraints on the cardiovascular system whand associated allometric relationships were not those that
viewed as a complex delivery system, but detailed knowledgepplied best. Kleiber (Kleiber, 1932) and Brody and Procter
of how the restraints are implemented by mammals will continuBrody and Procter, 1932) found, from experimental
to require study of the system from basic physicameasurements, that the rates of heat production and oxygen
considerations. For this reason, and in view of the continuingonsumption vary essentially as mammal mass raised to the
interest in the subject, it seems worthwhile to reconsider here tip@wer 3/4.
development of the scaling laws of the cardiovascular system Other important measurements of physiological similarity
with particular emphasis on their experimental basis and theivere reported during this period. For example, Clark (Clark,
implications regarding the basic workings of the system. 1927) showed that the heart rate of mammals varies essentially

with mammal mass raised to the powév4. Woodbury and
Hamilton (Woodbury and Hamilton, 1937) and Gregg et al.
Historical perspective (Gregg et al., 1937) showed that the systolic and diastolic
Similitude in the physiological processes of mammals hablood pressures of mammals are independent of mammal size,
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and Brody (Brody, 1945) showed that the heart mass and blodide scaling scheme of Lambert and Teissier (1927) resulted,
volume of mammals vary directly with body mass. with cardiac output predicted to vary as a 2/3 power law and
Significant experimental studies of the similarity inheart rate as al/3 power law. In contrast, if elasticity was
mammals continued during the last half of the twentietmeglected rather than viscosity, the resulting scaling rules
century. Schmidt-Nielsen and Larimer (Schmidt-Nielsen andequired the conditions that cardiac output must scale directly
Larimer, 1958), for example, measured the oxygen partiakith mammal mass and that heart rate must remain unchanged
pressure in the blood of mammals and showed decreasimgth changing mammal mass.
pressure with increasing mammal size. Holt et al. (Holt et al., In this same work, the present writer considered the subject
1968) examined cardiac output in detail and showed that ftom the more general perspective of non-uniform scaling, i.e.
varies essentially as body mass raised to the power 3/4, asdaling where major descriptive aspects of the system are
Gehr et al. (Gehr et al., 1981) studied the respiratory systesubject to different geometric scale factors (Dawson, 1991).
of mammals and showed that the net capillary volume waghe analysis started with a simplified representation of the
proportional to body mass. cardiovascular system as a closed system having heart,
Interestingly, the 3/4 power law for rate of oxygencapillaries and connecting vessels between the two. Elastic
consumption received renewed attention near mid-centurgffects were restricted to the heart, inertial effects were
when Hemmingsen (Hemmingsen, 1960) reported resultsssumed to be dominant in the connecting vessels and viscous
indicating that the law applies not only to mammals but alséorces were assumed to be dominant in the capillaries,
to cold-blooded animals, to unicellular organisms and, perhapsopnsistent with conditions expected from mechanics. Heart
even to more general forms of life. The rate of oxygemrmass and blood volume were assumed to be proportional to
consumption of birds was also discussed in terms of the 3fiammal body mass. Developments followed systematically as
power law (Lasiewski and Dawson, 1967). The emerginglescribed below.
implication was that the 3/4 power relationship for rate of (a) Details of heart pumping were considered and basic
oxygen consumption represented something approaching naodeling arguments were used to establish the requirement
general rule of biology. However, such an interpretation didhat blood pressure must be independent of mammal mass.
not meet with universal acceptance. Prothero (Prothero, 198@)hree fundamental relationships were also developed
Patterson (Patterson, 1992) and Riisgard (Riisgard, 1998pvolving the dimensions of the connecting vessels and the
among others, provided strong evidence countering the claidimensions and number of capillaries.
that the 3/4 power law is a basic feature of biology. Bartels (b) Two additional relationships were introduced, one
(Bartels, 1982) and Heusner (Heusner, 1991) questioned tkencerning cell diffusion and the other concerning cardiac
fundamental standing of the law for mammals, and Bennett ar@bntraction. These were combined with the above results to
Harvey (Bennett and Harvey, 1987) questioned its applicatioshow that the radius and length of the connecting vessels scale
to birds. with  mammal mass raised to the powers 3/8 and 1/4,
With regard to theoretical developments, the early workespectively, and that capillary radius, length and number scale
of Lambert and Teissier (Lambert and Teissier, 1927) isvith mammal mass raised to the powers 1/12, 5/24 and 5/8,
noteworthy because it attempted to place the subject within thespectively.
broad framework of dimensional analysis and modeling theory. (c) These scaling laws were shown to lead, in turn, to the
Predictions from this theory included the results that the rateequirements that rate of oxygen consumption and cardiac
of oxygen consumption and cardiac output must vary witloutput scale with mammal mass raised to the power 3/4 and
mammal mass raised to the power 2/3, and that heart rate mtisat heart rate scales with mammal mass raised to the power
vary with mammal mass raised to the power/3. The -1/4.
predictions differed somewhat from the developing body of The first assumption of b, involving cell diffusion, used the
experimental measurements that indicated 3/4-aitiscaling  conditions of scale-invariant diffusion coefficient and driving
laws for rate of oxygen consumption and heart rateforce. The second assumption of b, concerning cardiac
respectively. However, the theoretical nature of the worlcontraction, involved an experimental power-law relationship
allowed it a degree of longevity. The work continued to beconnecting contraction speed and cardiac fiber diameter. Small
regarded into the 1970s, and beyond, as the best availaldleanges in these conditions would, of course, cause small
theoretical description of the scaling of the cardiovasculachanges in the predicted results. This work is continued in the
system of mammals (Kenner, 1972). present review, with further attention to the experimental basis
This was, in large part, the situation that existed some 1f@r the description of the system.
years ago when the present writer first considered the subject
(Dawson, 1991). The application of conventional scaling
procedures to the cardiovascular system was investigated and Scope of this review
shown to be inadequate because of competing scaling lawsThe purpose of the present review is to reconsider in detail
dictated by the necessary presence in the theory of both thee earlier development (Dawson, 1991) of scaling laws for the
elasticity of the heart muscle and the viscosity of the blood. I€ardiovascular system of mammals, with emphasis on the
viscosity was ignored, contrary to its importance in the systenexperimental basis for the laws and on an increased
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understanding of their origin and their application. The basi

model used for the cardiovascular system will be the same
employed earlier. However, instead of starting the discussic Dawson (1991)
at the cardiac response level, the starting point will be th |

condition that blood pressure in mammals is independent «

Scale-invariant

body mass. This is a derived result from the original work an blood pressure

also a widely accepted experimental fact. Its use allows son |

simplification in the development of the scaling laws. Dawson Dawson Dawson
Starting at this level, three relationships will be developec (1991) (present study) (present study)

between the radius and length of the main connecting vesst | | |

. Cdll diffusion Heart rate Oxygen use
of the system and the radius, length and number of th|. o oo Rete of oxygen Oxygen transfer

capillaries, as in the earlier work (Dawson, 1991). The tw(| (experimental) uptake (experimental)

additional relationships needed to solve the scaling laws fc

thg;e variables will, however, be chosen differently from in th Oxygen pressure

original development. Oxygen pressure (experimental)
Two cases will be considered. In the first case, the 3/4 pow:| Scaling laws, (experimental) I

law for the rate of oxygen consumption and #ig¢4 power vascular system Scaling laws,

law for heart rate will be employed, and these will be showi vascular system

to lead to the same vascular scaling laws as found in the earl Scaling laws,

work. In the second case, two theoretical relationship pe—— vascular system p—

; ; i At : eart rate law

involving oxygen utilization and oxygen transfer will be Oxygen rate law Oxygen rate law

employed as the two additional relationships required. Thes
will alsp be Showp.to 'eaF’ to the same vaspular scaling IaV'I':Hig. 1. Scheme of the present approach and comparison with that
as earlier. In addition, this development will be extended tsojowed in earlier work.
obtain, respectively, the 3/4 ard/4 scaling laws for the rate
of oxygen consumption and heart rate. The alternativ
developments are intended to provide increased confidenceatrium and left ventricle and the right atrium and right
and understanding of the scaling laws for the system. ventricle. The left atrium collects oxygen-enriched blood
The general scheme of the present approach is illustratediieturning from the lungs, and the left ventricle pumps this
Fig. 1 and contrasted with that of the previous work. The steddood through systemic arteries to the systemic capillaries of
and assumptions shown include identification of relationshipthe body for exchange of oxygen and other products. The right
based on experiment. These involve a cell diffusion law and atrium collects this blood on return through systemic veins, and
cardiac contraction law in the earlier work, the heart rate anthe right ventricle pumps this blood through pulmonary arteries
oxygen rate laws and an oxygen pressure law in the first case the pulmonary capillaries of the lungs for recharge of
considered here, and the oxygen pressure law in the secooxlygen and transfer of gases. Pumping, by contraction, of the
case considered here. left and right ventricles occurs at the same time, so that
Scaling laws for other physiological processes of mammalthe blood in the respective sides of the heart is forced
will also be considered in this review, and additional new lawsimultaneously to the body and lungs.
will be developed. The connection between the scaling laws The essential parts of the cardiovascular system can be seen
for mammals and birds will be established, and the role of thi® be the heart, the blood, the systemic and pulmonary
3/4 scaling law for rate of oxygen consumption as arcapillaries and the connecting vessels between the left and right
experimental representation, rather than a fundamental law sfdes of the heart and the capillary beds. This idealized system,
biology, will be discussed. or model, forms the basis for the development of scaling laws
for the system as discussed here. The connecting vessels to
and from each side of the heart will be regarded as single
The cardiovascular system macroscopic vessels, and the capillary beds will each be
The cardiovascular system of mammals consists broadly oégarded as a parallel array of individual microscopic vessels.
the heart, the blood and the blood vessels. In many respectsAdditional properties will be ascribed to the model as indicated
is like a mechanical system and, in its simplest engineeringy measurements from mammals ranging in size from the
form, may be considered as two pumps in series (the left amdouse to the elephant.
right sides of the heart) with connecting vessels (the arteries In the idealized model, the characteristic radius and length
and veins) directing the working substance (the blood) to anof the connecting vessel (aorta) are denoted zgnd La,
from exchange devices (the capillaries) for transfer of product®spectively, and the characteristic radius, length and number
in support of life-sustaining activities. of the capillary vessels in each capillary bed are denoteg by
A simplified representation of the system is shown in Fig. 2Lc and nc, respectively. In addition, the ventricles (pumping
As indicated, the heart consists of four chambers, the letthambers) of the heart are regarded as approximately
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PC The first relationship requires that ventricular volumes be
PA PV proportional to mammal mass, the second requires that the
volume of the connecting vessels be proportional to mammal
mass, and the third requires that the net volume of the
capillaries be proportional to mammal mass.
Measurements (Holt et al., 1968) for the end-diastolic
volumes of the left and right ventricles of mammals ranging in

vC AO size from rat to cow provide direct experimental support for
RA the proportional relationship for ventricular volume
Ya N A (relationship 1a). Also, measurements reported by Gehr et al.
RV

(Gehr et al., 1981) for the net volume of pulmonary capillaries
I l for a similar range of mammals provide direct support for

the proportional relationship for total capillary volume
(relationship 1c). And measurements reported by Clark (Clark,
1927) for the aortic cross-sectional flow area, when combined

SV e SA with typical measurements reported by Noordergraaf et al.
(Noordergraaf et al., 1979) for aortic length, provide support
A— over a wide range of mammal sizes for the proportional

— relationship for the connecting vessels (relationship 1b).

Scaling laws for heart dimensions

Fig. 2. lllustration of the cardiovascular system of mammals. LA, left N @ddition to blood mass, it is also well established that the
atrium; LV, left ventricle; AO, aorta; SA, systemic arteries; SC,empty heart mass of mammals varies directly with mammal
systemic capillaries; SV, systemic veins; VC, venae cavae; RA, righhass (Brody, 1945). The same is true for the ventricles (Holt
atrium; RV, right ventricle; PA, pulmonary arteries; PC, pulmonaryet al., 1968). Thus, assuming the same cardiac tissue mass per
capillaries; PV, pulmonary veins. unit volume for all mammals, the mass relationship for the
ventricles isa?h+alhCW, where the first term is proportional
cylindrical in form, with an average characteristic radiustO the mass of the ends and the second to the mass of the lateral

denoted bya, and with an average characteristic length andportion. As with relationships la—c, each of the two products
wall thickness denoted Hyandh, respectively. An objective in this last relationship can be considered proportional to
of the present work is to discuss the scaling laws that mu§tammal mass. The resulting two relationships, together with
apply to these descriptive variables when considering theffduation 1a, then require the following scaling relationships for
values for mammals of different sizes. An additional objectivdhe dimensions of the ventricles:

is to discuss these results in terms of the actual scaling laws a0 W3, (2a)
that exist for various physiological processes of mammals and s
thus contribute to a physical understanding of their origin. . | O WA (2b)
an
h O W3, (2¢c)

Basic similarity relationships Measurements providing experimental support for the

The total blood volume in mammals is known from extensivésecond of these relationships, involving ventricular lerigth
measurements to vary directly with their body mass (Brodyhave been given by Clark (Clark, 1927) for the lengths of the
1943). In the model under consideration, this means that theft ventricle of mammals ranging in size from the mouse to
sum of the blood volume in the heart, the connecting vessel§e nhorse. This result, together with the known validity of
and the capillaries must vary directly with mammal mass. If th?elationship 1a in the form2OWI, establishes the validity of
sum is proportional to body_mass, the individual parts can als@|ationship 2a for ventricular radius. The fact that
be expected to be proportional to body mass. Thus, for thgsntricular mass is proportional to mammal mass then finally
dimensions of the ventricles, the connecting vessels and thenfirms the validity of relationship 2c for ventricular
capillaries, the following volume relationships may be written:nicknessh. In particular, the foregoing mass relationship on

@ 0w, (1a)  which relationships 2a—c are based may be written as
ra2la 0 W (1b) hOWI(a2+al). With a andl varying as mammal mass raised to
and the power 1/3h must also vary in this manner.
ncrczl_c Oow y (1C)
where W denotes mammal mass and where the synibol Scaling relationships from blood flow

denotes proportional variation under change in mammal mass. The derivation of the scaling laws for the dimensions of the
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blood vessels presents more of a problem than that for tHellows directly from the condition that blood flow out of the
heart ventricles. Relationships 1b,c provide two connectiongentricle must equal blood flow in the connecting vessel. The
between the five vascular variablgsL, rc, Lc andne. Three  following relationship may thus be written for the blood
additional relationships are therefore needed to define th@essure from inertial resistance:

scaling laws for these variables. To assist in identifying thes

2L 0P
relationships, the mechanics of ventricular pumping and bloo P O pla“LawUm . (4)
flow can be examined. For simplicity in this regard, only blood ars

flow from the left side of the heart will be considered. Similar

. . . . : Now, the blood densitp is the same for all mammals, the
considerations will apply to the right side.

. M . roducta?l is proportional to mammal mass and the rbkiga
The underlying principle to be employed here is that th prop bhig

. . is independent of mammal mass. Hence, on using the
maximum b.IOOd pressure due to the pumping of the b'°9d .Oll‘élationship 1b and requiring to be independent of mammal
O.f the yentnclgs must be the same for all mammals. Th|§ 'S Rass, this last relationship is found to provide the simple
similarity requirement of mammals that can be establishe Caling law:
from general considerations of heart elasticity an Lol -1 )
cardiovascular response (Dawson, 1991), but may also be '
regarded as a fundamental experimental fact on the basis which requires, on considering different mammal sizes, that the

previous measurements (Woodbury and Hamilton, 1937ength of the connecting vessels vary inversely with heart rate.

Gregg et al., 1937; among others). Interestingly, the validity of this last relationship was implicitly
confirmed in an earlier independent work (Noordergraaf et al.,
Stroke volume 1979), in which wavelengths associated with the pressure pulses

Consider first the radial contraction of the left heart ventricldn the aorta during heart beats were shown to be proportional to
during its pumping cycle. Léfi, denote the maximum inward aortic length. Such wavelengths are inversely proportional to
movement of the walls of the ventricle. The maximum volumdeart rate and, hence, the aortic length was implicitly shown to
of blood Bm squeezed into the connecting vessel may then béry inversely with heart rate, as in relationship 5.

represented by the proportional relationship: Attention may next be.dire.cted toiwards' the visgous resistance
to blood flow in the capillaries. This resistance is well-known
0 1 Umd in fluid mechanics and is representable by Poiseuille’s Law. The
BmDﬂlUmD.—* —. (3) . . .
0O 2 ap resulting maximum pressuR in the blood may be expressed

. in proportional terms as the rait.cVm/rc2, wherep denotes
The volumeBm denotes the stroke volume of the ventricle andy,q viscosity of the blood angh, denotes the maximum velocity
has been shown by measurement (Holt et al., 1968) t0 vagf the piood through each of the capillaries. In a manner similar
directly with mammal mass. Thus, in view of relationships, that used for blood acceleration in connection with
2a-c, the displacemeitim must, likea, | andh, vary with q|5tionship 5, the velocity may be related in proportional terms
mammal mass raised to the power 1/3. Relationship 3 can thgh the maximum displacement of the ventricle by the ratio

be written as the simpler expressi@alialUm. alwUm/ner 2. The pressure may then be expressed as:
Resistance to blood flow By O HlaLcwUm ©)
The blood volume pumped into the connecting vessel by th andc¢t

ventricle must, of course, force the blood already in the vessel
and in the capillaries to move forward. If there were ngy,
resistance to the blood movement, this displacement would tal  Ja is independent of mammal mass, as noted above. On

place with no increase in the blood pressure in the Vent”d%sing relationships 1 and 5, this last relationship thus provides,

Such, howe\{er, Is not the case. The blood flqw IS re5|§ted l%r Pv independent of mammal mass, the scaling relationship:
inertial force in the connecting vessel, where viscous resistance

is negligible, and by viscous force in the capillaries, where rene?/3 O ra?AWAS, (7)
inertial resistance is negligible. Each of these forces causes )
pressure increase in the blood. For the maximum pressure to

the same for all mammals, the maximum pressure from ea ¢ andnc of the system. Two additional relationships are thus

force must l.)e independent of mamma'l mass. still needed for determination of the scaling laws of each. Once
The maximum pressurB, from the inertial resistance of aSP

The blood viscosityu is the same for all mammals. Also,
e producta? is proportional to mammal mass and the ratio

t can be seen from the above that relationships 1b,c and 7
Yovide three relationships between the five variahlds, rc,

) . . . . these are known, relationship 5 can be used to determine the

blood flow in the connecting vessel is related in a proportion ;
. : . caling law for heart rate.

sense to the density of the blogu and its maximum
acceleratiomn in the connecting vessel through the product _ _
pLaAm. The acceleration is also related in a proportional sense ~ Scaling laws for blood vessels —first approach
to the maximum displacemebl, of the ventricle through the ~ The two additional similarity relationships needed for
ratio alw?Um/ra2, wherew denotes cyclic heart rate. This ratio establishing the scaling laws for the vascular system may be
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104~ (Heusner, 1991) has reported deviations on the basis of
detailed statistical analyses of numerous measurements.

In the present work, the 3/4 power law for rate of oxygen
consumption and the-1/4 power law for heart rate will
accordingly be regarded as good average representations of
measurements over the size range from mouse to elephant. The
following relationships may thus be written as experimental
scaling laws describing the workings of the cardiovascular
system of mammals:

w OW4 (8a)
Vo, 0 W84, (8b)

10! | The first of these relationships may be used directly with

102 100 relationship 5 to establish the scaling law for the length of the

104 — connecting vessels, and this may then be used with relationship

Elephant 1b to establish the scaling law for the radius of these vessels.
The results may be expressed as:

La 0 W4, (9a)
rall WO/8. (9b)

Rabbit  yo _ 11 owss These scaling laws are the same as those derived earlier from
Mouse .~ Guinea alternative considerations (Dawson, 1991). Typical values
1009 pig reported by Noordergraaf et al. (Noordergraaf et al., 1979) for
the length of the aorta of mammals provide a scaling exponent
of 0.30, in fair agreement with the 1/4 (0.250) exponent of
relationship 9a. Detailed measurements (Clark, 1927) of aortic
l I L J flow area provide an exponent of 0.72, which converts to an
102 10010 10* 10°  exponent of 0.36 for the aortic radius, in good agreement with
Animal mass (kg) the 3/8 (0.375) exponent of relationship 9b.
Fig. 3. Variation of heart rate and the rate of oxygen consumption ~ Relationship 8b requires some additional consideration of
Vo, with mammal mas¥V (data from Brody, 1945). oxygen utilization before application. Oxygen utilization must
equal oxygen transfer from the systemic capillaries and also
oxygen transfer to the pulmonary capillaries. Total oxygen
found from general theoretical considerations, or they maffansfer rate from, or to, a capillary is governed by the well-
come directly from generally accepted experimentaknown diffusion relationship for gases and is proportional to
relationships. The latter approach will be employed firstthe product of (i) the difference in average oxygen partial

followed by a discussion of alternative theoreticalpressure inside and immediately outside the capillary and (ii)
relationships. the capillary surface area. It is also inversely proportional to

It is well known from measurement that the heart rat€apillary wall thickness, i.e. the difference between the outside
of mammals can be considered to vary approximately wit@nd inside radii of the capillary. Basic similarity considerations
mammal mass raised to the powet/4 and that the rate suggest that the inside and outside oxygen pressures are
of oxygen consumptiorVo, can be considered to vary proportional to one another under change of scale. The same
approximately with mammal mass raised to the power 3/4s expected for the capillary radii. Using these conditions, the
These variations are illustrated in Fig. 3 using some of théesulting proportional relationship for net oxygen transfer then
original data (Brody, 1945). Here, logarithmic axes are usednvolves simply the product of the average partial pressure in
so that data of the forg=AWN plot as a straight line with slope the capillarieso, their numbenc and their length.c, that is:
equal ton and with valuey at W=1 equal to the valuA. The ;
solid lines in the plots indicate predictions from the indicated Vo, U Poftcle. (10)
relationships for heart rate and rate of oxygen consumption. In using this last relationship, it is, of course, necessary to

The overall agreement shown in Fig.3 betweerknow how, if at all, the oxygen partial pressure in the blood
measurements and the power-law relationships can be seernveoies with mammal size. Fortunately, Schmidt-Nielsen and
be good. However, the representations must be consideredrimer (Schmidt-Nielsen and Larimer, 1958) have made
approximate as a result of more recent studies. For exampktensive measurements of this pressure for a wide range of
Bartels (Bartels, 1982) has demonstrated deviations from thrmammal sizes, and their results have been shown to be in general
3/4 power law foNo, for very small mammals, and Heusner agreement with the following relationship (Dawson, 1991):

103

102

Heart rate, o (beats min'!)

Steer
102+

Rat

Rate of oxygen consumption, Vo, (ml min-!)
O
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Fig. 4. Variation of oxygen partial pressuRg in the blood with

8 ~

mammal massV (data from Schmidt-Nielsen and Larimer, 1958). 10 Horseo
1mmHg=0.133kPa. o Cow

3 107 - b

£ og  SFH

Po O W12, (11) s )0 uman

o0
The adequacy of the relationship is illustrated in Fig. 4 for & oot
typical measurements. More extensive comparisons have be & Guinea
given previously (Dawson, 1991). Using relationships 10 an Z pigo ©Rabbit
11 and relationship 8b, the scaling relationship for the produt i 103 -
is accordingly: 3 oRat  nele = 192x103W5/6

NcLe 0 WA/6, (12) £ at

= ol °
On combining this relationship with relationship 1c, the § 10 Shrew “©Mouse
scaling law for radius may be determined. The scaling law fc Z
capillary length_c and numbenc may then be determined from 3 . | I | , ;
relationships 7 and 12 with relationship 9b. In this way, the 1073 102 10°! 100 10! 102 10°
following scaling laws for the capillary vessels are found: Animal mass (kg)

re O W12, (13a)  Fig. 6. Variation of net length of the pulmonary capillarigetc,
wherenc is capillary number antcis capillary length, with mammal
124
Le OWP (13b) massW (data from Gehr et al., 1981).

and
nc O We/8, (13c)

These scaling laws are identical to those derived earligirovides an exponent of 0.85, in good agreement with the
using alternative arguments (Dawson, 1991) rather than thexponent of 5/6 (0.833) given by relationships 13b,c.
experimental laws of relationships 8a,b. Figs5 and 6
illustrate the general validity of the relationships using data
for capillary radiusc (Fig. 5) and net lengthcLc (Fig. 6), as Scaling laws for physiological processes
determined from measurements (Gehr et al., 1981) of the The scaling laws of relationships 9 and 13 for the vascular
volume and surface area of the pulmonary capillariesystem provide a basis for the scaling laws of various
(Dawson, 1991). physiological processes of mammals. In particular, by starting

The data for the capillary radius show considerable scattewith these relationships and reversing the foregoing arguments,
but the trend is in agreement with that expected fronthe scaling laws for blood pressure, heart rate and the rate of
relationship 13a. A best-fit equation to the data provides axygen consumption can readily be established. The origin of
scaling exponent of 0.079, in good agreement with the 1/1these well-known laws is thus seen to rest in the underlying
(0.083) exponent of relationship 13a. The data for the nedfcaling laws for the vascular system. Additional scaling
capillary length is likewise in good agreement with therelationships also follow from this description, as described
prediction from relationships 13a—c. A best-fit to these dathelow.
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Cardiac output characteristic length dimensioly is determined by the
In addition to the basic geometric scaling relationships forelationship:
blood vessels, the scaling law for cardiac output can be brought Is O (Winc) /3, (14)

th'.th'g tthe fr.amdevgork of t.r(;e Qesct[:ptmn jlmtplyf b}tl nltztlng Ithati.e. as mammal mass raised to the power 1/8.
IL1S determined Dy considering the proauct of Stroke VOIume |\ o q4ition. since mammal mass and heart mass are

and hgart rate as represented by relgtlonsh|ps 3and 8a. T 8portiona| under change of scale, the characteristic length
result is t.hat card|ag output must, like -the rate of oxyge efined by relationship 14 is the same as that for heart tissue.
consumpt_|oq, scale with ma”_‘ma' mass raised to the power 3 us, average body tissue and heart tissue may be considered to
This law is in agreement with measured values (Holt et aIbe the same for the present purposes. The diameter of a cardiac
1968). muscle fiber, for example, should therefore scale with mammal
Urine output and nephra number mass in the manner of relationship 14. No measurements
é)resently exist to test this prediction, but the scaling law
brought within the framework of the present description. Théndlcates that a factor of more than 4 should be found between

governing relationship is analogous to that of relationship 15UCh measurements for the mouse and the elephant.

for oxygen transfer rate, except that the driving force is th Bec"?‘use of the S|r_n|lar|ty between. average body tissue and
scale-independent blood pressure rather than the scaFéQart tissue, the cyclic rate of operation of average body tissue

dependent oxygen partial pressure. Thus, the scaling law s also be considergd eqqal o th‘.’".t of cardiac tissue, |e equal
urine output is that for the produwlc, and this is proportional 1o the heart raten. Using this condmon,_the oXygen u_t|I|zed
to mammal mass raised to the power 5/6. Analysis (Adolpﬁ?y the small amour_n of average body tissues per unit volume
1949) of various experimental measurements indicated 'na cycle of operation may thus be expressed in the form:

scaling exponent of 0.82, in good agreement with the 5/t Vo, Pdls
(0.833) exponent expected here. el 3 O FER (15)

The scaling law for the variation in the number of
fundamental renal units in the kidneys of mammals, thevhere Ps denotes the oxygen partial pressure immediately
nephron units and the nephra numbers, may also be consideeederior to the tissue in the interstitial fluid. On using the
with the present theory. These units consist of a set gfreviously described scaling laws fds,, ne, w andls, it can
capillaries through which fluid is extracted and partiallyeasily be seen that the left-hand side of this relationship is
reabsorbed to rid the body of waste water. Thus, consideririgdependent of mammal size, as may be expected from
nephron architecture to be similar among mammals, with thghysical considerations. The right-hand side of the relationship
same number of capillaries in all such units, the number ahust then also have this property. It can accordingly be seen
nephrons, for example, can be expected to scale directly as thhem the scaling laws fos and w that the partial pressuis
number of capillaries of the present theory, i.e. as mammahust be independent of mammal size. This is in contrast with
mass raised to the power 5/8 (0.625). Interestingly, this is, ithe partial pressure in the blood, which varies with mammal
fact, the case. Measurements and countings (Kunkel, 1930)m@ss in the manner of relationship 11, but is consistent with
Johns Hopkins, many years ago, provided nephra numbers fgeneral diffusion processes in tissues.
mammals ranging in size from the mouse to the ox; and This last result can be used to infer the scaling relationship
Adolph (Adolph, 1949) later showed these to be described bipr the spacing between a capillary and the tissue mass (or
a best-fit power law involving mammal mass raised to th@verage body cell) serviced by it. Assuming, in particular, that
power 0.62. the oxygen partial pressure decreases linearly from its value in

The agreement between the present theory and thibe capillary to zero at the center of the tissue mass, the
measurements of urine output and nephra number is importagtpression for the oxygen pressure at distabcom the
not only in general terms but also because it provides specift@pillary isPo—PoD/ds, whereP, denotes, as above, the partial
support for scaling relationships 13 for the systemic side of theressure in the capillary artd denotes the spacing between
circulation. The results presented in Figs 5 and 6 provided thibe capillary and tissue-mass center. The distance from
experimental support for the pulmonary side of the circulationcapillary to the outside surface of the tissue masdsik.
The indications are, therefore, that relationships 13 apply to tHeubstituting this fob in the above expression, the value of the
capillaries of the body in general, as expected from thexygen pressur®s, at the surface is found to IBgls/ds. For

The scaling law for urine output of mammals may also b

theoretical development. this to be independent of mammal size, it is therefore
necessary, from the scaling relationshipsHgandls, that the
The average body cell spacingds vary with mammal size raised to the power 1/24.

In a further study of scaling laws for physiological No measurements exist for this spacing at the present time.
processes, attention may be directed to the small amount lbwever, the scaling law should be that for the spacing
average body tissue, or average body cell, serviced by a sindgletween capillary and cardiac muscle fiber in mammals. The
capillary. The mass of this tissue is evidently proportional t@pacing for the elephant, for example, should be approximately
the ratioW/ne, and, since mass is proportional to volume, itsl.6 times that for the mouse.



The cardiovascular system of mammails 403

Of course, variation in spacing between capillary and tissue The additional assumptions to be used here may be
mass for the purposes of oxygen diffusion would presumablgummarized as follows.
leave unchanged other diffusion processes that are associatedc) Relationships 1b,c, requiring blood volumes in the

with life-sustaining activities of the tissue mass. connecting vessels and capillaries to be proportional to
_ _ mammal mass.
Cardiac contraction (d) Relationship 5, requiring blood pressure in the

The scaling law of relationship 14 for the characteristiacconnecting vessel to be independent of mammal size.
length of an average body cell allows investigation of the (e) Relationship 7, requiring blood pressure in the capillaries
fundamental processes involved in heart contraction. lto be independent of mammal mass.
particular, contraction occurs as a result of the propagation of (f) The condition that the partial pressure of oxygeat the
an action potential over the length of the heart. The net timgsurface and within the interior of an average body cell is
for propagation must be proportional to heart length anthdependent of mammal mass.
inversely proportional to propagation speed. This time must (g) The condition that the partial pressure of oxygen in the
also be proportional to the time between heart beats fdsood varies with mammal mass raised to the poviét?2.

different mammals, i.e. the reciprocal of heart rateThe (h) Net rate of oxygen consumption is determined by the
appropriate relationship iswC/l, where C denotes product of oxygen partial pressure in the blood, the number of
propagation speed ahdlenotes ventricular length. capillaries and their length.

Now, the propagation spe€&ds known from measurements  The internal consistency of each of these assumptions can
on nerve fibers to vary with the diameter of the fiber carryindpe verified using the foregoing solution for the scaling laws of
the signal. The relationship is generally assumed to be a powttie vascular system and the experimental laws for heart rate
law with an exponent in the range 0.5-1.0 (Jack et al., 1975nd the rate of oxygen consumption. The objective here is to
With b denoting the value of the exponent, and the fibeshow that these assumptions can be used alone to derive the
diameter identified with the characteristic cell length ofscaling laws for the system.
relationship 14, the proportional relationship for the process Assumptions a and f for oxygen utilization provide the
may therefore be written a®OPI"1. Using the scaling general relationshipwls2OWP. Using relationship 5 of
relationships from the present theory, it can readily be seen thassumption d expressing heart rate in terms of vessel length
the exponentb must have the value 2/3. The cardiacand relationship 14 defininig in terms of capillary number,
contraction speed is thus predicted to vary with cardiac fibehis relationship may be written as:
diameter according to a 2/;3 power I{;lw. No expenme'ntal 230 Lo W23, (16)
measurements presently exist to confirm this result. Since,
according to the present theory and relationship 14, cardiachich provides the first of the two theoretical relationships
fiber diameter varies with mammal mass raised to the poweequired.

1/8, the contraction speed in the heart muscle of an elephantAssumptions b and g for oxygen transfer, relationship 5 of

can be expected to be approximately 2.6 times faster than tregsumption d relating to La, and relationship 14 definirlg

in the mouse. in terms ofne, provide the relationshipv-112 0Lz Wine.
Using relationship 1c of assumption c for capillary volume,
this result may also be written as:

Scaling laws for blood vessels — second approach
g pp re2 0 Law1/12, 17)

The two empirical relationships 8a,b describing scaling laws
for heart rate and the rate of oxygen consumption may behich provides the second of the theoretical relationships
replaced by theoretical relationships for the purposes akquired.
deriving these scaling laws from basic concepts, as well as On using these last two relationships with relationships 1b,c
those for the vascular system. As indicated above, earli@f assumption c, and relationship 7 of assumption e, the full
theoretical work of this kind relied on fundamental set of five scaling relationships for the vascular system can now
considerations of cell diffusion and cardiac contractiorbe determined without the use of the empirical relationships
(Dawson, 1991). The present discussion involves consideratidar heart rate and the rate of oxygen consumption.
of the oxygen consumption of tissue serviced by a capillary In particular, by substituting relationships 16 and 17 into
and consideration of oxygen transfer to the tissue. The twelationship 7, the scaling law fora can be obtained.
assumptions are based on the previous discussion of averdgelationship 1b then provides the scaling law lar The
body cell and can be expressed as follows. scaling law forr¢ may next be determined from relationship 17

(@) The oxygen utilization of an average body cell pemand that fomc from relationship 16. Finally, the scaling law
volume in a cycle of operation is the same for all mammaldpr Lc can be determined from relationship 1c. These laws, so
i.e. Pdg/wl3OWP. found, are, in fact, identical to those already determined here

(b) The oxygen transferred to an average body cell peand in the earlier work of the writer (Dawson, 1991), namely
volume in a cycle of operation is the same for all mammalghe two relationships 9 governing the scaling of the length and
i.e. PoLo/wl3OWP. radius of the connecting vessels and the three relationships 13
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governing the scaling of the radius, length and number of theelationship involved the heart rate and the characteristic

capillary vessels. lengthls of an average body cell in the forals20WP, as is
_ also the case here for oxygen diffusion with assumptions a
Heart rate and rate of oxygen consumption and f above. Cardiac contraction was considered in terms of

With the above results, it can be seen that the scaling laventricular length and the propagation speed of contraction.
for the heart rate is now determined theoretically fromThe resulting relationship, as discussed above, involved heart
relationship 5 of assumption d to be the well-knovid law.  rate and cell length in the forml<?3 -1, where the exponent
The scaling law for the rate of oxygen consumption is now als@/3 in this relationship was chosen to be consistent with
determined theoretically from assumption g and relationshipxperimental measurements. With these two relationships used
10 of assumption h be the well-known 3/4 law. in place of assumptions a and b above, the scaling laws for the

These last results are significant in that they demonstrate thadscular system and rate of oxygen consumption described
the origin of the 3/4 law for the rate of oxygen consumptiorhere can also be established.
rests in the basic design and operation of the cardiovascularA variation of the exponent 2/3 foks in the above
system. The only direct experimental relationship used in theelationship for cardiac contraction will, of course, lead to a
derivation is that of assumption g, relating oxygen partiatleviation from the predicted 3/4 law for the rate of oxygen
pressure in the blood to mammal mass. If this relationship wensumption. This was noted in the original work, such that if
changed slightly, as might be permitted by the measurementbe exponent 2/3 were changed to 1/2, the predicted law for the
a slight deviation from the predicted 3/4 power law wouldrate of oxygen consumption would become a 0.73 power law
result. For example, if thel/12 relationship were assumed rather than the 3/4 power law.
instead to be &0.09 relationship, the scaling law for the rate It is also of interest to note, from the earlier work, the
of oxygen consumption would become a 0.73 law rather thaobservation that the general diffusion relationship in the form
the 3/4 power law. This indicates, of course, that the 3/40s2provides an explanation as to how heart rate increases
power law predicted in the present work is a convenienwith decreasing mammal size. WIWA/8, as in this work,
representation and not a fundamental feature of the theorthe heart rate is predicted to follow &4 law, as required from
consistent with the work of Bartels (Bartels, 1982) andmeasurement. Moreover, the smaller the mammal, the smaller
Heusner (Heusner, 1991), where deviations from the 3/4 powdéne cell — and hence the faster the diffusion process and the
law were determined from statistical study of measurementstesulting heart rate.

In connection with the above remarks, it is interesting to note
also that, if the oxygen pressure in the blood were assumed to
be independent of mammal size, the theory would then require Similarity of birds — a brief study
that heart rate be the same for all mammals and that the rateThe fact that birds have a four-chambered heart and a closed
of oxygen consumption should vary directly with mammalcirculatory system similar to that of mammals suggests the
mass. Capillary radius and length would also be required to klvisability of examining the application of the present theory
independent of mammal size. Such results are, of courst® birds. Early work (Brody and Procter, 1932) indicated that
inconsistent with measurements and illustrate again theesting rate of oxygen consumption of birds varied essentially
sensitivity of the performance of the system to its componentss a 2/3 power relationship with body mass, in contrast with
and to physiological processes. the essentially 3/4 power relationship found by them for

Restraints on the system when viewed as a delivery systemammals. Lasiewski and Dawson (Lasiewski and Dawson,
(as in the recent theories, e.g. West et al., 1997; Banavar et 41967) divided birds into two size groups (passerine and non-
1999) may ultimately provide reasons for the design of thpasserine species) and showed that the rate of oxygen
cardiovascular system being as it is. However, before thabnsumption of each group was proportional essentially to
possibility can be assessed, such descriptions need to bedy mass to the power 3/4, but with different proportional
generalized to allow variation of capillary dimensions withcoefficients. A 2/3 power law was, however, indicated when
mammal mass. At present, existing theories assume scal®th groups were considered together. More recently, Bennett
invariant capillary dimensions. and Harvey (Bennett and Harvey, 1987), using a larger

database and more detailed methods of analysis, argued
persuasively that no such natural division exists between
Previous work of the writer species of birds and that a 2/3 power relationship for the rate

It is worthwhile in this review, and here in particular, to noteof oxygen consumption provides the appropriate description.
the details of the two assumptions used in place of a and b inlf birds followed the 3/4 power law for oxygen consumption
the original work of the writer (Dawson, 1991). As noted(as indicated by Lasiewski and Dawson, 1967), the workings
above, these involve consideration of cell diffusion and cardiaand similarity of their cardiovascular system would be the
contraction. Cell diffusion referred not only to oxygensame as described by the present theory for mammals.
diffusion but to any of the life-sustaining diffusion activities However, if they follow the 2/3 power law (as indicated by the
of an average body cell. With scale-invariant diffusionwork of Bennett and Harvey, 1987), then some modification is
coefficient and driving force envisioned, the resultingrequired. Taking the latter position, a clue for the modification
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can be found in the work of Calder (Calder, 1968) and As a consequence of assumption i and the simplified model
Lasiewski and Calder (Lasiewski and Calder, 1971) in whiclof the cardiovascular system, the blood volumes in the heatrt,
the heart mas¥\h and heart ratex, of birds were shown to the capillaries and the connecting vessels are all required to
scale according to the relationships: be proportional to mammal mass. As a consequence of
Wh 0 WO9L, (18a) assumptions i and ii, all linear dimensions of the ventricles of
the heart are required to scale with mammal mass raised to the

wp 0 W0.23, (18b)  power 1/3. As a consequence of assumption iii, the blood

. . . ressure in the connecting vessels and in the capillaries are
Thus, unlike mammals, heart mass is not proportional to bo

mass, and the heart rate does not follow-th&l power law oth required t.o be mde_pendgnt of mammal Mass.
' Three scaling relationships are also provided from
described above for mammals.

assumptions i and iii for the characteristic radius and length of

A reconsideration of the various parts of the present theor . . .
. : onnecting vessels and the characteristic radius, length and
will show that heart mass could equally well be substituted fof o o . i
. . " X . number of capillaries. Two additional relationships are
body mass in the various descriptions without loss of meaning, . .
" : . erefore needed to complete the solution for the scaling laws

For example, the condition that blood volume is proportion o :

. or the characteristic dimensions of the vascular system. These

to body mass could also have been stated relative to heart mass. " ; . . :
WO additional relationships are first assumed in the present

Of course, with mammals, no significant differences would " ; ) ;

) . . review to be the well-known experimental relationships

result because of the proportional relationship between heart” " .

. requiring heart rate and rate of oxygen consumption to scale

mass and body mass. If there were a difference, the use of hear, .
with mammal mass raised to the powef$/4 and 3/4,

mass could be argued to be the more correct reference mass,

This is the case with birds, and the argument for replacing bo&espectl\{ely. The resulting five relgtlonshlpg, together with
. o ) . ssumption v, are then shown to yield scaling laws for the
mass with heart mass is indeed persuasive on the basis of te

. . . . vascular system requiring that the radius and length of
heart-rate law of relationship 18b. In particular, replacing bOd)éonnecting vessels (main arteries) vary with mammal mass
mass with heart ma¥#, in the relationshippCW-14and using

relationship 18a for birds, the heart rate is predicted to vary églged to the powers 3/8 and 1/4, respectlvely, and that .the
. R . radius, length and number of capillary vessels vary with
body mass raised to the powe®.23. This is in precise

agreement with the measured relationship, relationship le_:gz;nerzg\lle:;ass raised to the powers 1/12, 524 and 5/8,

fOLﬁEjptl%:tg ft:rebirfdlg tt?]gtrg?; glfji)r:t'tli‘; Ic?o;hseumegx gnlj s:rséliéc These laws are the same as those derived earlier by the writer
' ' Y9 P a different manner (Dawson, 1991). In that work,

output are predicted to scale with body mass to the power O'O?Onsideration of the mechanics of heart pumping and

i.e. essentially to the power 2/3 (as indicated in the work : ! -
) ~ventricular contraction led to predictions for blood pressure
Bennett and Harvey, 1987). The radius and length of connectin . : : ) .
d stroke volume identical to those in assumptions iii and iv,

vessels should now scale with body mass raised to the power : . .
augove. Also, in place of assumptions concerning heart rate and

0.34 and 0.23, respectively; and the capillary radius, length anglte of oxygen consumption, two conditions were originally

number should scale with body mass raised to the powers 0.01 Ssumed for cell diffusion and cardiac contraction, as discussed

0.23 and 0.57, respectively. Also, the term ‘average body celf
above.

in the previous discussion should be replaced with ‘average To provide further insight into the physical origin of the

cardiac cell'. Interestingly, the oxygen partial pressure is now _:
predicted to scale with body mass raised to the pe@&76. scaling laws for the vascular system, and for the heart rate and

ra&e of oxygen consumption, two additional relationships have

It is also reassuring to note that the 2/3 exponent associat ) :
. ) : . . . een presented here concerning oxygen consumption by the
with contraction propagation and cardiac fiber diameter, as ;
. . Lo e Small mass of average body tissue (or average body cell)
considered above, remains unchanged in this modification.

serviced by a capillary and the oxygen transfer by a capillary.
_ _ Additional assumptions used in this part of the work are that
Discussion oxygen transferred and used, per average body cell in a heart
The scaling laws governing the cardiovascular system afycle, are both independent of mammal size, and that the
mammals have been derived here in a manner emphasizing thertial pressure of oxygen in body tissue is independent of
experimental basis for the laws. A simple model of themammal size. The associated two relationships, specifically
cardiovascular system has been used, consisting of the heaeiationships 16 and 17, have been used in place of the
the capillaries and connecting vessels between the two. Tl&perimental scaling laws for heart rate and rate of oxygen
fundamental assumptions used in the first part of the work mayonsumption to derive again the same scaling laws for the
be summarized as follows: (i) blood volume is proportional tovascular system as found from the use of the experimental
mammal mass; (ii) heart mass is proportional to mammal madsws. The laws for heart rate and rate of oxygen consumption
(iii) blood pressure is independent of mammal size; (iv) strokalso follow from this development.
volume is proportional to mammal mass; and (v) oxygen The theory described in the present review for mammals has
partial pressure in the blood varies as mammal mass raisedlieen extended here to include the cardiovascular response of
the power-1/12. birds. Differences in the scaling relationships of heart rate and
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Table 1.Predicted scaling laws for mammals for variagle  describing this similarity because of the implicit assumption of
and mammal mas#4 in the formy W2 uniform scaling. The use of extended theory for non-uniform
scaling of the system does not suffer from this limitation, and

Variable Symbol Exponent the results, as discussed here, provide a degree of
Ventricular length ' 1/3 understanding not otherwise available.
:g:::g lr::“:; rLa ":ﬁ The non-uniform scaling theory leads to the conclusion
: gth a that the rate of oxygen consumption and heart rate scale with
Capillary radius rc 1/12 .
Capillary length Lo 5/24 mamma}l mass ralsed to the powers 3/4 er_ﬂti/4,
Capillary number Ne 5/8 respectlyely. As discussed here, _these are theoretical results,
Heart rate ® /4 based in part on representations of measurements of
Rate of oxygen uptake Vo, 3/4 cardiovascular processes. Slight variations in the
Cardiac output - 3/4 representations will lead to slight variations in predicted
Urine output - 5/6 results. The strict 3/4 power law for the rate of oxygen
Nephra number - 5/8 consumption cannot therefore be viewed as fundamental
Cardiac action potential c 112 to the theory, but rather simply as a convenient form

propagation velocity

representing measurements and the working of the system.
Oxygen pressure Po -1/12

What appears fundamental is the design of the system and the

Additional scaling laws are noted in the text. The last relationship? a?fepr}éscltObg;g?lljﬁsrgges;:rse m\;ﬁ!;/tedt.he rate of oxygen

for oxygen partial pressure in the blood is experimental, althdugh i . ) . .
can be considered as one of the relationships required for the theorfOnsurnptlon of birds can be considered to follow a 2/3 scaling

aw rather than the 3/4 scaling law for mammals suggests

further that the 3/4 scaling law is not a fundamental feature of

the rate of oxygen consumption are shown to be attributabl@ology. It is also significant that the 2/3 scaling law for birds

directly to the non-proportional relationship between heartan be obtained from the similarity laws of mammals by

mass and body mass for birds. The basic theory remaimsplacing the proportional relationship between heart mass and

unchanged. body mass for mammals with the non-proportional relationship
Table 1 provides a summary of various scaling laws foidentified for birds.

mammals from the present theory. Additional scaling laws are The present review has attempted to provide some additional

noted in the text. All invite further experimental investigation.understanding and insight into the basic similarity existing in

In connection with the scaling laws in Table 1, it may be notethe cardiovascular system of mammals. Why the design of the

that the scaling variation of capillary radius with mammalsystem is as it is has not been addressed and remains an

mass is not very pronounced and that, without the aid of thiatriguing question in biology.

theory, the scatter in measurements, such as shown in Fig. 5,

could lead to the incorrect conclusion that capillary radius | am grateful to the referees for their many valuable

does not vary with mammal size. A similar situation may alseomments and criticisms of the original manuscript.

exist with the red blood cells, whose radius might be expected

to be correlated with mammal mass in the same way as

capillary radius. The lack of observed correlationship of such

measurements (as reported by Schmidt-Nielsen, 1984, a onstitution of mammalsSciencel09, 579-585.

others) may therefore be due_ §|mply to scatter !rbanavar, J. R., Maritan, A. and Rinaldo, A.(1999). Size and form
measurements and the small variations that actually exist.; otficient transportation networkblature 399, 130-132.

Other factors such as cell flexibility may also enter anggapels, H. (1982). Metabolic rate of mammals equals the 0.75 power

minimize the correlationship. In any case, arguments for of their body weightExp. Biol. Med7, 1-11.

scale-invariant capillary radius based on the scale-invariamennett, P. M. and Harvey, P. H.(1987). Active and resting

dimensions of red blood cells, as sometimes made, are notmetabolism in birds — allometry, phylogeny and ecoldgyZool.,

persuasive in view of the present work and the results shownlLond.213 327-363.

in Fig. 5. Brody, S.(1945).Bioenergetics and Growth, with Special Reference
to the Efficiency Complex in Domestic Animalew York:
Reinhold Publishing.

Concluding remarks Brody, S. and Procter, R. C.(1932). Relation between basal

. . . metabolism and mature body weight in different species of
On the basis of the present review, and the earlier work of mammals and birdJniv. Missouri Agr. Exp. Station Res. Bull.

the writer, it may be concluded that the well-known similitude 166, 89-102.
in the cardiovascular system of mammals has its origin in thgaiger, W. A. (1968). Respiratory and heart rates of birds at rest.
basic design of the system and in the basic physiological condor70, 359-365.

processes involved in its workings. Ordinary dimensionatlark, A. J. (1927). Comparative Physiology of the Heart.
analysis and modeling theory are unable to reveal the lawsCambridge: Cambridge University Press.
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