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Summary

To reconcile the scaling of the mechanics and energetics of locomotion to recent
data on the scaling of the mechanics of muscle fibres, I have extended the theory of
Taylor and colleagues that the energetic cost of locomotion is determined by the
cost of generating force by the fibres. By assuming (1) that the cost of generating
force in a fibre is proportional to Vmax (maximum velocity of shortening) and (2)
that, at physiologically equivalent speeds, animals of different body sizes recruit
the same fibre types, this extension quantitatively predicts the scaling of the
energetics of locomotion, as well as other observations, from the scaling of Vmax of
the muscle fibres. First, the energetic cost of locomotion at physiologically
equivalent speeds scales with M^~° 16, where Mb is body mass, as does Vmax of a
given fibre type. However, the energetic cost at absolute speeds (cost of transport)
scales with A/b~

0'30, because small animals must compress their recruitment order
into a narrower speed range and, hence, recruit faster muscle fibre types at a given
running speed. Thus, it costs more for small animals to move lkg of their body
mass 1 km not only because a given muscle fibre type from a small animal costs
more to generate force than from a large one, but also because small animals
recruit faster fibre types at a given absolute running speed.

In addition, this analysis provides evidence that Vmax scales similarly to l/tc

(where tc is foot contact time) and muscle shortening velocity (V), in agreement
with recent models. Finally, this extension predicts that, at physiologically
equivalent speeds, the weight-specific energetic cost per step is independent of
body size, as has been found empirically.

Introduction

Over the past 20 years, Taylor and colleagues have examined how the energetics
and mechanics of locomotion scale with body size in mammals. They found that
although the weight-specific mechanical power used for running is independent of
body size (Heglund et al. 1982), the energetic cost to move a gram of tissue a given
distance scales with Mb~

0i3° (Taylor et al. 1982). Load-carrying experiments led
Taylor et al. (1980) to postulate that the energetics of locomotion depended on
force generation by the muscles. They further proposed that the increased
energetic cost of locomotion in small animals is due to the increased cost of
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generating force in their fibres, which in turn is associated with their higher
maximum velocity of shortening (Vmax).

If this theory is correct, then we should be able to predict the scaling of whole-
animal energetics from that of isolated muscle fibres. The paucity of data on the
scaling of muscle properties with body size prevented quantitative testing of this
theory in the past. With recent information on the scaling of muscle properties
with body size (Rome et al. 1990; Altringham and Young, 1991), we can begin to
test this hypothesis.

Theory

The hypothesis of Taylor et al. (1980) (Taylor's hypothesis) is formally stated in
equation 1.

E = Fmuscie x cost of generating force x average fibre length , (1)

where E is metabolic rate during running (watts), F is average muscle force
(newtons), cost of generating force is given per unit length (watts per newton
metre) and average fibre length is given in metres. According to Biewener (1989a),
because small animals have a more crouched posture (and thus lower effective
mechanical advantage) than large ones, they must generate greater weight-specific
forces to support their body weight. Hence,

^muscle = Mb-°-26 x Fground x constant. (2)

However, Alexander et al. (1981) found that the fibres in small animals tend to be
shorter than in large ones. Fibre length in proximal muscles scaled with A/b°'3U,
whereas fibre length in distal muscles scaled with Mb

017. Thus, weighting the two
exponents by relative muscle mass gives:

average fibre length = Mb
0 2 7 x constant. (3)

When equation 1 is rewritten in terms of ground forces (equation 4), the scaling
exponents in equation 2 and equation 3 reduce to Mb**°, thereby cancelling the
size-dependent effects associated with differences in posture.

E x Aground x cost of generating force x constant. (4)

Because the average ground force equals body weight (Wb), this can be
rewritten as:

— oc cost of generating force x constant. (5)
Wb

Taylor et al. (1982) have shown that:
£

oc Mb~0-30 x constant, (6)
KVb X o

where S is running speed. Substituting equation 5 into equation 6 gives:

Cost of generating force °c Mb~
0-30 x 5 . (7)
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Thus, although the cost of generating force increases with running speed, at a
given absolute running speed, the cost of generating force simply scales with

Formally, the cost of generating force is a function of where on the force-
velocity curve the muscles are operating (i.e. V/Vmax; where V is shortening
velocity during locomotion). As V increases, force decreases but the rate of ATP
splitting increases, so that when V equals Vmax, the cost of generating force is
infinite. For this treatment, however, we assume that the cost of generating force is
that during isometric contractions (V=0). This assumption is made for a number
of reasons. First, it is probably a good approximation. During locomotion, muscle
performs both shortening contractions (in which the cost of generating force is
higher than during isometric contractions) and lengthening contractions (in which
the cost of generating force is lower than during isometric contractions). Second,
with the information available we cannot calculate the energetics of muscles
during locomotion any more accurately. There is no information on V/Vmax in
mammals during lengthening and shortening (as there is in fish, Rome et al. 1988)
and, even if there were, there is very little information on the energetics of
lengthening muscle. Third, Alexander's (1991) analysis (based on a number of
assumptions) concludes that the energetic cost of the muscle performing the
contractions during locomotion is likely to be a constant multiple of the cost of
generating force during isometric contractions. Hence, if energetic cost during
isometric contractions underestimates the cost during locomotory contractions, it
would do so by a constant which is scale-independent. Finally, the cost of
generating isometric force can be approximated by using the Huxley (1957) model
(see below) and can be measured in skinned fibres over a wide range of animal size
(as suggested in Rome et al. 1990).

Although, there is no information on how the cost of generating force in isolated
fibres scales with Mb, Rome et al. (1990) have recently found that Vmax of the slow
oxidative (SO, type I) fibres scales with Mb~0L8 and that of fast glycolytic fibres
(FG, type lib) scales with an even smaller exponent (Mb~007) (N.B. a given fibre
type is qualitatively similar in small and large animals in relative Vmax, order of
recruitment and aerobic capacity, but differs quantitatively in such parameters as
Vmax). Thus, Vmax of a single fibre type scales with a smaller exponent than does
the cost of generating force during locomotion (Rome et al. 1990). This quantitat-
ive discrepancy in the scaling exponents seems puzzling because from a theoretical
viewpoint (see below) one might anticipate that the cost of generating force in
isolated fibres is proportional to Vmax. Explaining this discrepancy thus presents a
further challenge for Taylor's hypothesis (equation 1).

Do V,,Ifl.v and the cost of generating force in isolated fibres scale differently?

The simplest explanation of the apparent discrepancy noted above is that the
cost of generating force simply increases more rapidly than V^^ in isolated fibres.
The empirical evidence is equivocal on this point. There is some empirical
evidence supporting the disproportionate increase in the cost of generating force
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compared to Vmax (fr°g vs tortoise muscle, Woledge, 1968; Qi0 values of Vmax and
the cost of generating force in frog fibres, Rome and Kushmerick, 1983), but there
is also empirical evidence suggesting that the cost of generating force and Vmax

scale similarly (mouse soleus vs EDL, Crow and Kushmerick, 1982, 1983).
From a theoretical analysis based on the Huxley (1957) model of crossbridge

dynamics, it is likely that the cost of generating force scales similarly to Vmax. In
this analysis, the rate of crossbridge attachment is /(I—/t) and the rate of
crossbridge detachment is gn, where / is the attachment rate constant, g is the
detachment rate constant, and n is the proportion of attached crossbridges.

Huxley's model shows that:
Vmax*g. (8)

If we assume that the force per crossbridge during isometric contractions is
independent of fibre Vmax, then force is proportional to the number of attached
crossbridges (n). In a steady state, the rate of crossbridge attachment equals the
rate of crossbridge detachment [i.e. f(l—n)=gn]. Thus, solving for n, gives:

f
Force <* —I— . (9)

(f+8)
If we assume that one ATP is split for each crossbridge undergoing an

attachment-detachment cycle, then the rate of ATP splitting at steady state will be
equal to the rate at which crossbridges are detaching (gn). Substituting equation 9
for n, gives:

AtP oc J$- . (10)
f+g

It is not known whether /changes in proportion to g as fibre Vmax increases. This
would be a necessary condition to keep the force constant (which it appears to be,
Rome et al. 1990) and for the ATP turnover rate to increase in proportion to Vmax.
However, because the cost of generating force is the ratio of equation 10 to
equation 9, this will reduce mathematically to:

force

Hence, irrespective of how / changes with g, the cost of generating force is
proportional to g (and thus to Vmax). Although the above analysis is fairly
convincing, this treatment of the Huxley (1957) model is oversimplified. Detach-
ment rate, g, is a function of crossbridge position and average crossbridge position
depends on shortening velocity (Huxley, 1957). The g while shortening at Vmax

(equation 8) will be faster than the g at isometric conditions (equation 11). It is
reasonable to suppose that gisometric/gv™, will be the same in fibres with different
values of Vmax, but this is unproved. Hence, further empirical evidence is
necessary to support the similarity of the scaling exponents and exclude the
possibility that the cost of generating force in isolated fibres scales differently from

'max-
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How can the cost of generating force during locomotion scale differently from
Vm(U- of a single fibre type if they scale similarly in isolated fibres?

The difference between the exponents for Vmax of a single fibre type and the cost
of generating force during locomotion seems paradoxical only because of the
implicit assumption that the same muscle fibre types are recruited at a given absolute
speed in both small and large animals. Only in this case would there be the
expectation that the scaling exponent from a particular muscle fibre type should
agree with the scaling exponent for the cost of generating force (or cost of
transport) in locomoting animals. This assumption, however, seems unlikely.
Fibres are recruited in a fixed order (Henneman etal. 1965) and, as speed
increases, animals recruit faster fibre types (Rome etal. 1984). Because large
animals can run faster than small ones (at least over much of the size range), it
seems inevitable that the small animals will go through their recruitment order at a
slower running speed.

Although muscle recruitment in mammals has not been measured as a function
of running speed, it is reasonable to expect that animals cannot sustain exercise
intensities where there is a significant recruitment of anaerobic fibres. Maximum
sustainable galloping speed (where presumably all aerobic fibres are recruited)
scales with Mb

017 (e.g. 3.1ms"1 in rats and 11ms"1 in horses as in Fig. 1A;
calculated from Heglund and Taylor, 1988). Thus, small animals must recruit their
aerobic fibre types (SO and fast oxidative glycolytic, FOG) over a smaller running
speed range and, thus, their recruitment order will be effectively 'compressed' into
a narrower range of locomotion speeds (as has been previously reported in cold
fish vs warm ones, Rome etal. 1984). Hence, at a given running speed, the small
animal will have to recruit faster fibre types than the large animal, as illustrated in
Fig. 1A. This means that, when measuring E at a given absolute running speed
(e.g. 3.1ms~'), we might be comparing the cost of generating force (and Vmax) of
FOG fibres in the small animal (rat) with the cost of generating force (and Vmax) of
SO fibres in the large animal (horse). This would result in a larger difference in the
cost of generating force (and Vmax) between the large and small animal than would
be given by the scaling exponent for a single fibre type (Fig. IB), and hence
potentially explain the discrepancy in scaling exponents between the cost of
generating force during locomotion and Vmax of a single fibre type.

If this explanation is correct, then if we extend Taylor's hypothesis to assume (1)
that at physiologically equivalent speeds, the same muscle fibre types will be used
in small and large animals, and (2) that the cost of generating force is proportional
to Vmax, then at a physiologically equivalent speed, the following equation should
hold:

- ^ - M b = - ° - 1 8 , (12)
Vvb

where -0.18 is the approximate scaling exponent for Vmax of a single aerobic fibre
type. This prediction is supported by measurements of energetics at physio-
logically equivalent speeds. Although E has not been reported specifically at
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Fig. 1. How compression of recruitment order in small animals influences scaling of
the energetics of locomotion. (A) A schematic representation of recruitment of
different fibre types (open symbols=SO, closed symbo!s=FOG) as a function of
running speed in the rat (diamonds) and the horse (triangles). The Vmax values for each
fibre type (data from Eddinger et al. 1986; Rome et al. 1990) have been measured from
skinned fibres at 15°C except for the rat FOG, which is calculated from the Kmax of rat
FG data. This figure demonstrates five points. First, at physiologically equivalent
speeds, the animals use the same fibre types. Thus, at the maximum sustainable
galloping speed (3.1 ms~' in rats, l l m s ~ ' in horses), all aerobic (SO and FOG) fibres
are recruited. Second, the physiologically equivalent speed occurs at a much higher
running speed in large animals than in small ones (e.g. maximum sustainable galloping
speeds are U r n s " 1 and 3.1ms"1 for the horse and rat, respectively; calculated from
Heglund and Taylor, 1988). Third, the recruitment order is therefore compressed into
a slower range of running speeds in the small animal. Fourth, at an absolute running
speed, the small animal will be recruiting faster fibre types. For instance at 3.1m s~',
the horse is probably using only slow fibres (SO) as this is close to its minimal trotting
speed (Heglund and Taylor, 1988). Fifth, Vmax increases more rapidly with running
speed in the small animal than in the large one, in a similar fashion to the way \./tc does.
B shows how Vmas of SO and FOG fibres scale with Mb. If one measures E at
physiologically equivalent speeds (i.e. maximum sustainable galloping speed), then the
animals would be using the same fibre types. Hence the Vmax and the cost of generating
force in the fibres being utilized would scale the same as Vmax of the FOG fibres
(Mb"*~° 16). This agrees with how E of animals running at physiologically equivalent
speeds scale. If E is measured at an absolute speed, such as 3 .1ms" ' , then the rat
would be using both its FOG and SO fibres, but the horse at this speed will be using
only its SO fibres. Thus, we would be comparing the mechanics and energetics of the
FOG fibres in the rat to that of SO fibres in the large animals. This would give an
equivalent scaling exponent of Mb°°~0'34 for the cost of generating force and Kmax of
the recruited fibres, which is close to the scaling exponent for E at absolute running
speeds.

physiologically equivalent speeds, it can be back-calculated from the reported
findings that the cost per step is independent of body size at physiologically
equivalent speeds (such as the trot-gallop transition and maximum sustainable
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galloping) and that stride frequency at a physiological speed scales with Mb~016

(Heglund and Taylor, 1988). Thus, as found by Biewener (19896):

£
— <x stride frequency x cost per step = Mb~° l6 x constant. (13)

The fact that the scaling exponent for E is nearly the same as that for Vmax of SO
fibres supports this extension of Taylor's hypothesis. It is worth noting that one
obtains similar results no matter which 'physiologically equivalent speed' is
considered, but that different physiologically equivalent speeds may reflect
different design constraints (R. McN. Alexander, personal communication). For
instance, Alexander and Jayes (1983) have shown a mechanical basis for the
trot-gallop transition, whereas maximum sustainable performance is, at least in
part, a reflection of an animal's metabolic capacity. We use maximum sustainable
galloping speed throughout this discussion because it gives a better estimation of
the cost of transport and provides a more obvious endpoint of muscle fibre
recruitment.

This extension, however, must also explain why the cost of transport scales with
Mb~030. It should be noted that the E at maximum sustainable galloping speed
described in equation 12 and equation 13 occurs at a much faster absolute running
speed in large animals than in small ones (Mb

017; Heglund and Taylor, 1988; e.g.
11 ms~' in horse vs 3.1ms"1 in rat; Fig. 1A). Hence, dividing the E at maximum
sustainable galloping speed (equation 13) by the absolute running speed at which
this occurs, approximates the cost of transport:

£ M -0.18
oc b x constant = Mb~035 x constant. (14)0 1 7

WbxS Mb

This scaling exponent is similar to that measured for the cost of transport
(Mb~(Otl, equation 6). It should be noted that the scaling exponent may be
somewhat smaller for FOG fibres than for SO fibres (-0.18; Rome etal. 1990;
Altringham and Young, 1991). If so, than this would result in better agreement
between Vmax and both the E at a physiologically equivalent speed and the cost of
transport.

Finally, this extension of Taylor's hypothesis is consistent with Kram and
Taylor's (L990) recent finding that:

E 1
— oc — x constant, (15)
Wb rc

where tc is foot contact time (tc decreases with increasing running speed because
stride frequency increases but duty factor remains constant). Equation 15 not only
empirically defines the scaling of E/Wb of animals of different sizes, but
empirically defines how E/Wb increases with increasing running speed in a given
animal. Although the relationship between tension rise during locomotion and
Vmax is too complex to approach by the Huxley (1957) model, there is some
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empirical evidence to suggest that Vmax would be proportional to l/fc (Stevens and
Renaud, 1985). If so, then \/tc can be viewed as a mechanical correlate of Vmux of
the fibres that are active. Hence, at physiologically equivalent speeds, l/fc should
scale as Vmax (i.e. as Mb~° 18). Back-calculating from l/tc=S/lc, where lc is stride
length (Kram and Taylor, 1990), gives good agreement (Mb~014), thus supporting
this notion. A similar approach to that used in equation 14 shows that Vmax and
l/tc also increase similarly with increasing running speed in animals of different
body size. Thus, the fact that l/tc increases much more rapidly with running speed
in small animals than in large ones supports the hypothesis that small animals go
through their range of Vmax values over a smaller speed range (compress
recruitment order), thus producing a steeper slope of Vmax of recruited fibres vs
running speed (as in Fig. 1A).

Alexander (1991) suggests that it might be more important for Vmax to scale as V
rather than to scale as l/tc, to maintain a constant V/Vmax for maximum efficiency
as Rome et al. (1988) have shown to occur in fish. However, it seems possible that
both V and l/fc scale similarly, and that Vmax scales appropriately for both.
Lindstedt et al. (1985), by a combination of anatomical and physiological analyses,
showed that the absolute length (A/) by which knee extensors shorten scales with
Mb°

 26. Because the muscle fibres in small animals are shorter than in large animals
(equation 3), the strain (A//fibre length) should be approximately scale-indepen-
dent (depending on exact fibre architecture), and hence V, at both physiologically
equivalent and absolute running speeds, should scale as stride frequency (as does
l/tc and Vmax).

Discussion

This extension of Taylor's hypothesis explains from first principles why the cost
of transport has a larger scaling exponent than for Vmax in a single fibre type, while
E at physiologically equivalent speeds and Vmax in a single fibre type have similar
scaling exponents. Thus, it provides strong support for Taylor et al.'s (1980)
original hypothesis that the energetic cost of locomotion is determined by the cost
of generating force in the fibres. Further, this treatment recognizes that the
recruitment order in small animals is probably compressed into a narrower speed
range than in large ones. Thus, it costs more for small animals to move 1 kg of their
body mass 1 km not only because a given muscle fibre type from a small animal
costs more to generate force than from a large one, but also because small animals
recruit faster fibre types at a given absolute running speed (Fig. 1).

Finally, this extension of Taylor's hypothesis, unlike previous papers (Heglund
and Taylor, 1988), affords no special significance to the constancy of the cost per
step at physiologically equivalent speeds, because it can explain the scaling of the
energetics of locomotion without invoking it. It has been suggested that the
constant cost per step is a basic property of locomotion and it costs small animals
more to run at a given speed because they must take more steps and incur more
cost associated with turning their muscles on and off (Heglund and Taylor, 1988).
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Although, mathematically, the cost per step is constant, it is simply explained by
this extension of Taylor's hypothesis:

E J>df . . r

x cost of generating force

oc—i^xMb-°-1 8 = Mb-°. (16)
Mb

Wb x step Wb x step

The weight-specific tension-time integral per step [JFdt/(WbXstep)] is simply
proportional to l/(stride frequency), because JFd;/s tep=^/(str ide frequency)
(N.B. stride frequency scales with Mb~016; Heglund and Taylor, 1988). However,
the cost of generating force increases in proportion to stride frequency (equation
12), and hence the product of the two terms is a constant.

To test this extension of Taylor's hypothesis further, it is necessary to test the
new assumptions on which it is based. One must determine scaling of the cost of
generating force and Vmax with body size and determine the running speed of
recruitment of different fibre types in mammals. As suggested by Alexander
(1991), it would also be useful to compare the energetics of muscle undergoing
lengthening and shortening contractions to the isometric case.

The author thanks Professors R. McN. Alexander, A. A. Biewener and C. R.
Taylor for making helpful comments on the manuscript. This work was supported
by NIH grant AR38404.
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