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In this paper I look at the scaling of the energy costs of
locomotion, and ask whether we can explain what we observe.
The explanations must depend on mathematical models. If we
cannot formulate a convincing model that predicts a scaling
rule reasonably accurately, we have failed to explain the rule.
The reverse is unfortunately not true; a model that predicts a
scaling rule correctly does not guarantee that our explanation
is correct, because several models may predict the same rule.

My interest here is in widely applicable scaling rules; for
example in rules that will predict the scaling of running over
the range from small rodents to elephants, or of flight from
sparrows to swans. Mice are not scale models of elephants, and
do not move like tiny elephants, and sparrows are not miniature
swans. The models will have to be very general, incorporating
little specific anatomical or kinematic detail. Conveniently, this
implies that they will be simple. Many simple models of
running, swimming and flight were presented at the first
Scaling Conference (Pedley, 1977), on which this paper builds.

In the decades preceding the first Scaling Conference,
measurements of metabolic rate during locomotion had been
greatly facilitated by the introduction of methods using

treadmills (Taylor et al., 1970), wind tunnels (Tucker, 1968)
and water tunnels (Brett, 1964). Allometric exponents relating
the measured energy cost of locomotion to body mass had been
calculated by Taylor et al. (1970) for running; by Tucker
(1970) for running and flight; and for swimming by Schmidt-
Nielsen (1972). Allometric equations in more recent papers are
referred to in later sections of this one.

Because muscles do not work with uniform efficiency, it is
much more difficult to devise a model that predicts the metabolic
energy cost of locomotion than one that predicts mechanical
work. In contrast, oxygen consumption (and hence metabolic
power) can be measured directly, whereas determination of
mechanical work in locomotion generally involves calculations
subject to a good deal of uncertainty. Thus comparisons between
theoretical and observed energy costs are not easy. It is the
metabolic cost of locomotion, rather than the mechanical work,
which is important for the animal’s energy budget.

Dynamic similarity
I will refer frequently to the concept of dynamic similarity
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To achieve the required generality, models designed to
predict scaling relationships for diverse groups of animals
generally need to be simple. An argument based on
considerations of dynamic similarity predicts correctly
that the mechanical cost of transport for running
[power/(body mass � speed)] will be independent of body
mass; but measurements of oxygen consumption for
running birds and mammals show that the metabolic cost
of transport is proportional to (body mass)−0.32. Thus the
leg muscles seem to work more efficiently in larger
animals. A model that treats birds as fixed wing aircraft
predicts that the mechanical power required for flight at
the maximum range speed will be proportional to (body
mass)1.02, but the metabolic power is found to be
proportional to (body mass)0.83; again, larger animals
seem to have more efficient muscles. A model that treats
hovering hummingbirds and insects as helicopters

predicts mechanical power to be approximately
proportional to body mass, but measurements of oxygen
consumption once again show efficiency increasing with
body mass. A model of swimming fish as rigid submarines
predicts power to be proportional to (body
mass)0.5�(speed)2.5 or to (body mass)0.6�(speed)2.8,
depending on whether flow in the boundary layer is
laminar or turbulent. Unfortunately, this prediction
cannot easily be compared with available compilations of
metabolic data. The finding that efficiency seems to
increase with body mass, at least in running and flight, is
discussed in relation to the metabolic energy costs of
muscular work and force.
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body mass.
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(see, for example, Alexander, 2003). Two bodies are
geometrically similar if one could be made identical to the
other by multiplying all its linear dimensions by the same
factor λ. By an extension of the same idea, two motions are
dynamically similar if they could be made identical by
multiplying all linear dimensions by a factor λ, all times by a
factor τ, and all forces by a factor φ. For example, the motions
of two pendulums of different lengths, swinging through the
same angle, are dynamically similar. Strict dynamic similarity
requires geometric similarity.

Two systems can only have dynamically similar motion in
particular circumstances. If gravitational forces are important,
ratios of (gravitational force/inertial force) must be the same
for the two systems, at corresponding stages of their motions.
For this to be possible, the systems must be moving with equal
Froude numbers [speed2/(gravitational acceleration � length)].
A fuller explanation of this point can be found in Alexander
(2003). In calculating a Froude number, any length
characteristic of the systems may be used; for example, leg
length is generally used in discussions of running. If viscous
forces are important, dynamic similarity is conditional on
equality of ratios of viscous forces to inertial forces, which
requires equal values of the Reynolds number (speed � length
� fluid density/viscosity). For dynamic similarity of vibrating
systems, the Strouhal numbers (frequency � length/speed)
must be equal. Froude, Reynolds and Strouhal numbers are
dimensionless. Other dimensionless numbers define conditions
for dynamic similarity, in systems for which other kinds of
forces are important.

Running
Because gravitational forces are important, dynamic

similarity in walking and running is possible only between
animals travelling with equal Froude numbers. Alexander
(1977) plotted relative stride length (stride length/leg length)
against the square root of Froude number, for ostriches and
various mammals, and found that all the points lay near a single
line. Alexander and Jayes (1983) showed in more detail that
mammals of different sizes, running with equal Froude
numbers, tend to dynamic similarity: they use the same gait,
similar relative stride lengths and duty factors, and exert
similar patterns of force on the ground. There are some
discrepancies (notably, rodents and other small mammals,
which run with their legs more bent than larger mammals, and
take relatively longer strides at the same Froude number), but
the predictions of dynamic similarity hold reasonably well.
Biewener (1989) pointed out that larger mammals need to run
on straighter legs than small ones, to avoid excessive bone and
muscle stresses. Birds of different sizes, running at equal
Froude numbers, also tend to move in dynamically similar
fashion, with discrepancies due to the largest birds keeping
their legs straighter (Gatesy and Biewener, 1991).

Some of the energy that mammals and birds would
otherwise need for running is saved by tendons that store and
then return elastic strain energy, in the course of a step.

Alexander (1988) pointed out that, for dynamic similarity in
running, animals should be elastically similar; in other words,
forces proportional to their body weights should cause equal
strains (fractional length changes). Bullimore and Burn (2004)
showed that this presents a problem, because tendon has the
same elastic modulus in mammals of all sizes. Elastically
similar structures undergo equal strains (change of
height/height) when loaded with their own weight. Structures
with equal elastic moduli loaded with their own weight,
however, undergo strains in proportion to the stress, which is
(weight/cross sectional area). If they are geometrically similar,
their weights are proportional to (length)3 and their cross-
sectional areas to (length)2. Therefore elastic similarity,
between mammals of different sizes whose tendons have equal
elastic moduli, is inconsistent with strict dynamic similarity.
Bullimore and Burn (2004) went on to show that the size-
related changes in posture that Biewener (1989) had shown to
be necessary to avoid excessive stresses in large mammals,
also made approximate elastic similarity possible.

For animals running in dynamically similar fashion, all
forces are proportional to body weight and all velocities to the
speed of running. Thus mechanical power is proportional to
(weight � speed), and the mechanical cost of transport
[power/(mass � speed)] is independent of body mass.
Alexander (1977) showed that cost of transport was
independent of mass for specific models of walking and
running.

Taylor et al. (1982) showed for a wide range of mammals
and birds that the metabolic power required for running was
linearly related to speed. They subtracted the intercept at zero
speed (representing the metabolic rate while standing still) to
obtain the net power required for running. They found that the
net metabolic cost of transport was proportional to body mass
(Mb)−0.32. Fig.·1 shows that the same relationship also fits data
from reptiles, amphibians and arthropods (Full, 1989).
Calculations based on force plate records and films of a smaller
sample of birds, mammals and arthropods showed, however,
that the mechanical cost of transport was independent of body
mass (Heglund et al., 1982; Full and Tu, 1991), as predicted
by the dynamic similarity model.

The efficiency with which the muscles perform the work
required for running is the work divided by the metabolic
energy cost. Fig.·1 seems to show that large runners are more
efficient than small ones; that the efficiency of running is
approximately proportional to Mb

0.3. The mechanical costs
shown in Fig.·1, however, ignore the savings made by elastic
mechanisms, leading to the impossible prediction (by
extrapolation) of efficiencies greater than 100% for animals of
the size of elephants. The apparent increase of efficiency with
increasing body size could be misleading if savings by elastic
mechanisms are proportionately larger in larger animals.
Apparent efficiencies calculated from the data of Fig.·1 are 17
times greater for 100·kg runners than for 10·g runners. It seems
most unlikely that any difference in the effectiveness of elastic
mechanisms, between runners of different sizes, is large
enough to account for that. We must conclude that the muscles
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of larger runners do indeed perform work with higher
efficiency. Before discussing this further, we will ask whether
the same is true for other modes of locomotion.

Flight
Flying insects, birds and bats use their wings to drive air

downward, exerting on the air a downward force that balances
body weight. In fast forward flight, the speeds of the beating
wings relative to the body are low compared to the speed of
the body relative to the air. In slow and hovering flight, the
reverse is true. We can make rough estimates of mechanical
energy costs by modelling fast fliers as fixed-wing aircraft
(following Pennycuick, 1969, with modifications) and slow
fliers as helicopters (Weis-Fogh, 1973). The cruising flight of
birds, bats and large insects such as locusts is fast in this sense.
Hummingbirds and many insects hover, and even in cruising
flight the wings of small insects move much faster than their
bodies; their flight is slow, in the sense used in this paragraph.

Flow over the wings of aeroplanes and the rotors of
helicopters is steady, in the sense that velocities remain
constant. In contrast, flow over a flapping wing is unsteady.
Aerodynamic forces acting in unsteady systems cannot be
predicted accurately by equations for steady flow.
Consequently, calculations based on steady aerodynamics, of
the power required for flapping flight, are subject to error
(Ellington, 1995; Rayner, 1995b). The greater the distance
travelled by the wing in a single beat, expressed as a multiple
of its chord length, the less serious are these errors likely to be.
Thus they are likely to be less serious in fast flight, than in slow
flight or hovering. In this paper, which requires only rough
answers, I tolerate the errors for the sake of simplicity.

I will consider fast flight first. The power P required for
flight by a fixed-wing aircraft is the sum of two components.

The induced power is required to give kinetic energy to the air
that is driven downwards to counteract gravity. The profile
power is required to overcome the drag due to the viscosity of
the air in the boundary layer, and to give kinetic energy to the
air that is drawn forward in the wake. The power needed to
overcome the drag on the body (parasite power) is sometimes
calculated separately, but here I include it in the profile power:

Total power = profile power + induced power

P = [(ρv3C0A/2) + (2kMb
2g2/πρvα)] (1)

(see, for example, Alexander, 2003). In this equation, ρ is the
density of the air, v is the speed, C0 is the zero-lift drag
coefficient, A is the wing area, k is the induced drag factor, Mb

is body mass, g is the gravitational acceleration and α is the
aspect ratio (the ratio of wing span to the mean chord; the chord
is the distance between the front and rear edges of the wing).
As speed increases, the induced power falls and the profile
power increases.

Two optimum speeds can be defined: the minimum power
speed at which the total power P is least, and the maximum
range speed at which the energy required to travel unit distance
(P/v) is least. These speeds can be obtained from Equation·1
by calculus (see, for example, Alexander, 1996). Textbooks of
aerodynamics usually treat the zero-lift drag as constant, as it
would be if the flight of different-sized animals were
dynamically similar. Dynamic similarity would, however,
require animals to fly at equal Reynolds numbers, that is at
speeds inversely proportional to their linear dimensions; a
moth with a 10·mm wing chord would have to fly ten times as
fast as a bird with a 100·mm chord. That would generally not
be the case, so we must take account of differences in C0. All
but the largest and fastest birds fly with Reynolds numbers Re
below 106, at which C0 is expected to be approximately
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Fig.·1. Graphs of cost of transport against body mass Mb for running animals. The upper line shows the net metabolic cost, and the lower one
the mechanical cost (ignoring fluctuations of internal kinetic energy, and energy saving by elastic mechanisms). On the horizontal axis, 0.1·mg
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proportional to 1/�Re and so to 1/�(chord � speed). For
example, pigeon wings have a chord of about 12·cm. When the
bird flies fast at 15·m·s–1, their Reynolds number is only
120·000.

A calculation of the maximum range speed, taking account
of this dependence of C0 on Re, yields:

Maximum range speed � Mb
4/7/A1/2α5/14 (2)

and
Power at maximum range speed � Mb

10/7/A1/2α9/14·. (3)

Rayner (1988) found that for birds, excluding
hummingbirds, wing area is approximately proportional to
Mb

0.72 and wing span to Mb
0.39. Hence chord (=area/span) is

proportional to Mb
0.33 and aspect ratio to Mb

0.07. By substituting
these proportionalities into Equations·2 and 3 we obtain:

Maximum range speed � Mb
0.18 (4)

and
Power at maximum range speed � Mb

1.02 .· (5)

Rayner’s calculations (Rayner, 1995a), which took account of
the vortex structure of the wake, gave maximum range speed
proportional to Mb

0.14 and power to Mb
1.10. Observed cruising

speeds of birds increase with body mass (Pennycuick, 1997),
but the correlation is too weak for a quantitative comparison
with the calculated exponents for maximum range speed.
These exponents for estimated mechanical power are very
different from the exponent for measured metabolic power;
Rayner (1995a) found that the metabolic power used in bird
flight was proportional to Mb

0.83. As for running, the efficiency
of flight increases with body mass (Fig.·2).

Until recently, calculations of the mechanical power
required for animal flight depended on mathematical models
(often more sophisticated than those presented here). There
were no more direct estimates until Biewener et al. (1992)
measured the forces exerted by the flight muscles of flying
birds, using a strain gauge bonded to the humerus. Powers
determined by this method (see especially Dial et al., 1997)
agree reasonably well with the results of mathematical
modelling (Alexander, 1997b).

Now we have to consider hovering. The rotating blades of a
helicopter, and the beating wings of a hovering animal, drive air
downwards. The power required for this can be estimated as:

Induced power = �(Mb
3g3/2πρr2) � �(Mb

3/r2)·, (6)

where r is the radius of the rotor (equivalent to wing length in
animals) and the other symbols have the same meanings as
before (see Alexander, 2003). Wing length is proportional to
Mb

0.53 in hummingbirds (Rayner, 1988) and to Mb
0.42 in

euglossine bees (Casey et al., 1985). In both cases, larger
animals are not geometrically similar to small ones, but have
relatively longer wings. With these exponents we get:

Induced power for hovering � Mb
0.97

and 
Induced power for hovering � Mb

1.08 (7)

for hummingbirds and bees, respectively. Rayner’s vortex

theory of hovering (Rayner, 1979) treats the aerodynamics
more realistically than the simple helicopter approximation,
but gives similar predictions of induced power.

As for fixed wing aircraft, the power requirements of
helicopters include profile power as well as induced power. For
well-designed rotors, profile power is expected to be about
proportional to induced power, so the exponents in Equation·7
should apply to total aerodynamic power as well as to induced
power.

Hovering animals may incur yet another power requirement,
which does not arise for helicopters. This is known as the
inertial power, to distinguish it from the aerodynamic (induced
plus profile) power. At the beginning of each stroke the wings
and an ‘added mass’ of air that moves with them are given
kinetic energy, which they lose at the end of the stroke. If this
energy were small compared to the kinetic energy given to the
air, it could be transferred to the air in the later part of the
stroke, while the wings were decelerating. In fact, for hovering
hummingbirds and insects, the inertial power is commonly as
large or larger than the aerodynamic power (see Alexander,
2003). In many insects, some or all of the kinetic energy may
be stored in elastic structures at the end of the stroke, and
recovered in the next stroke. Elastic structures of optimal
stiffness could in principle supply all the inertial power,
leaving the muscles to supply only the induced and profile
power.

The kinetic energy given to two wings at the start of a stroke
is Iω2, where I is the moment of inertia of one wing. If the wing
beat frequency is f, the mean power required to supply this
energy (twice in each wing beat cycle) is 2fIω2. I will assume
that each wing beats through an angle π during a half cycle of
duration 1/2f, making the mean angular velocity 2πf. For
simplicity, I assume that the stroke is made with constant
angular velocity. Thus the inertial power is given by:
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Inertial power = 2fI(2πf)2 = 8π2f3I . (8)

Each wing beat of a hovering animal adds a vortex ring to
the wake of moving air below it. For dynamic similarity
between animals of different sizes, the spacing of the rings
should be proportional to wing length. Alexander (2000)
pointed out that this implies equal Strouhal numbers, which
in turn implies that the wing beat frequency should be
proportional to �Mb/r2. I showed that it is indeed approximately
proportional to �Mb/r2, both for hummingbirds and for
euglossine bees. Thus:

Inertial power � Mb
3/2I/r6·. (9)

Weis-Fogh’s data for Lepidoptera, Hymenoptera and
Diptera (Weis-Fogh, 1973) show that wing moment of inertia
is approximately proportional to Mb

2, and wing length to Mb
0.4.

With these proportionalities, Equation·9 gives inertial power
proportional to Mb

1.1. The exponent is approximately the same
as the one estimated above for aerodynamic power for bees.
Weis-Fogh’s moments of inertia refer only to the wing itself,
ignoring the added mass of air, but this has probably had little
effect on our calculated exponent. Ellington (1984) found that
the added mass was about the same proportion of wing mass
(0.4) for a bee, a wasp and a moth.

Casey (1981) compared metabolic rates of hovering sphinx
moths with model-based estimates of mechanical power. The
models gave induced power proportional to Mb

1.07 and profile
power proportional to Mb

1.08. Measured metabolic powers were
proportional to Mb

0.77. If inertial power requirements were
taken care of by elastic storage, muscle efficiency was
approximately proportional to Mb

0.3. Casey and Ellington
(1989) made similar comparisons for hovering euglossine bees.
They found that metabolic power was proportional to Mb

0.58,
and efficiency to Mb

0.51 or Mb
0.47, for no elastic storage and

perfect elastic storage, respectively. These data for moths and
bees refer to fairly narrow ranges of body mass (about one
order of magnitude in each case), so the exponents could not
be determined very precisely, but it seems clear that for
hovering insects, as for running animals and flying birds,
efficiency increases with body mass.

Swimming
In this simple analysis, I will estimate the power required

for swimming by fish as if they were rigid submarines. This
approach underestimates the power by a factor of about 3, for
reasons discussed by Webb (1992). This factor changes only a
little with Reynolds number, in experiments with the same fish
swimming over a wide range of speeds. As the Strouhal
numbers of swimming fish vary little with size and speed (see
Alexander, 2003), the factor can be expected to be the about
same for different-sized fish swimming at the same Reynolds
number. The same conclusion seems to follow from the
computational fluid dynamics model of Schultz and Webb
(2002). The following discussion is concerned with the scaling
of power rather than with absolute values, so would not be
affected by a size-independent factor.

Animals develop the thrust required to propel them through
water by driving some of the water backwards. The power
required for swimming is the sum of parasite power, required
to overcome the drag on the body; induced power, required to
give kinetic energy to the water driven backwards; and inertial
power, required to give kinetic energy to body parts that are
accelerated at the beginning of each stroke. For an animal or
other body travelling at speed v through water of density ρ:

Parasite power = 0.5ρAv3CD·, (10)

where A is the total surface area of the body and CD is the
drag coefficient based on total area. For well-streamlined
bodies such as most fish, whales and squid, the drag
coefficient is proportional to Re−0.5 at Reynolds numbers
(Re) up to about 106, and to Re−0.2 at higher Reynolds
numbers. The change in exponent is due to flow in the
boundary layer changing from laminar to turbulent as the
Reynolds number passes 106. Small fish swim in the laminar
range, and whales generally in the turbulent range. Medium-
sized fish span the transition; for example, a 0.5·m fish
swimming at 2·m·s–1 would have a Reynolds number of 106.
Reynolds number is proportional to vl, where l is the length
of the body. Thus for laminar flow:

Parasite power � Av2.5/l 0.5

and for turbulent flow: 

Parasite power � Av2.8/l0.2 . (11)

Cetaceans ranging from small dolphins to blue whales have
lengths proportional to Mb

0.34, very close to geometric
similarity (Economos, 1983). Fish of different sizes also tend
to be close to geometric similarity (Peters, 1983). For
geometrically similar animals, A is proportional to Mb

0.67 and
l to 0.33, so that for laminar flow:

Parasite power � Mb
0.5v2.5

and for turbulent flow:

Parasite power � Mb
0.6v2.8·. (12)

Swimmers can develop the thrust they need by driving small
volumes of water backward at high speed, or large volumes at
low speed. The latter requires less induced power. The ratio
[parasite power/(parasite power + induced power)] is known
as the Froude efficiency. It is close to 1.0 for two of the species
studied by Wardle et al. (1995), and 0.75 for the third (see
Alexander, 2003, for the method of calculation). For these fish,
and presumably also for other fish and for whales, induced
power is much smaller than parasite power and can be ignored
in this simple analysis. Squids swimming by jet propulsion
operate at lower Froude efficiencies, so induced power could
not be ignored in discussions of them. Inertial power may be
substantial in swimming dolphins and tunas, mainly due to the
mass of water that oscillates with the tail rather than to the mass
of the tail itself, but may be supplied in part by tendon elasticity
rather than muscle action (Blickhan and Cheng, 1994;
Alexander, 1997a).
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Yates (1983) defined a coefficient of thrust:

Coefficient of thrust =
(metabolic rate − resting rate) / (0.5ρAv3)·. (13)

If Equation·10 held and muscle efficiency were constant, the
coefficient of thrust would be a constant multiple of the
coefficient of drag which, as we have seen, is a function of
Reynolds number. Yates analysed Brett’s data for salmon
(Brett, 1965), plotting thrust coefficient against Reynolds
number for fish of different sizes. Large salmon swim at higher
ranges of Reynolds number than small ones but, if efficiency
had been constant, the data for all sizes of salmon should have
lain on the same line on this graph. They did not lie on the
same line; larger fish had higher thrust coefficients at the same
Reynolds number, seeming to show that larger fish were less
efficient. This contrasts with the finding that larger running and
flying animals are more efficient. Yates (1983) recognised,
however, that the data probably suffered from two sources of
error. At low speeds the fish may have behaved erratically,
using more energy than would have been needed for steady
swimming. At high speeds, some of their metabolism was
probably anaerobic, and would have been missed by the
measurements of oxygen consumption. Thus the thrust
coefficients for slow swimming were probably misleadingly
high, and those for fast swimming too low, for each fish.
Correction for this would make the thrust coefficients lie more
nearly along a single line. We cannot exclude the possibility
that the swimming muscles of different-sized fish work with
different efficiencies, but there is no evidence of larger fish
being more efficient.

Efficiency
Previous sections have shown that, at least for running and

flight, muscles do the work of locomotion more efficiently in
larger animals. Kram and Taylor (1990) tried to explain this
observation for running. They ignored the metabolic cost of
doing work, and considered only the cost of exerting the force
required to counteract gravity. They assumed that muscles
work over the same ranges of the force–velocity relationship,
irrespective of speed and body size; faster muscle fibres would
be recruited at higher running speeds, and smaller animals
(whose feet remain on the ground for shorter times) would
need faster muscles than large ones. These assumptions led
them to the hypothesis:

Metabolic power � (body weight) / (foot contact time) . (14)

They measured foot contact time and oxygen consumption for
mammals of a wide range of sizes, running at a wide range of
speeds, and found excellent agreement with the hypothesis.
Roberts et al., (1998) found similar agreement for running
birds. Herr et al. (2002) modelled a selection of mammals,
ranging from a chipmunk to a large horse. For each model they
simulated running at a range of speeds, and showed that Kram
and Taylor’s hypothesis (Kram and Taylor, 1990) successfully
predicted the metabolic cost of transport of the real animal.

Because models of particular species were used, rather than a
general model of variable size, this study threw only limited
light on scaling principles.

Kram and Taylor did not discuss the physiological basis for
their hypothesis in detail. The metabolic rate of an active
muscle is not a function solely of the force it is currently
exerting, but depends also on the rate at which its length is
changing; for any given force, the metabolic rate is greater
when the muscle is shortening and less when it is being
stretched (fig.·1b in Alexander, 2002). In every step, leg
muscles are first stretched (doing negative work) and then
shorten (doing positive work). Suppose that an active leg
muscle has a metabolic rate x times the isometric rate. Then if
the corresponding muscle in a different-sized animal is
working at the same point in its force–velocity curve, it also is
expected to have a metabolic rate x times its isometric rate. If
the leg muscles of different-sized animals work over the same
range of their force–velocity curves, as Kram and Taylor
assumed, their metabolic rates (averaged over a stride) may be
equal multiples of the rate in isometric contraction. It would
be interesting to have experimental confirmation of the
assumption. Kram and Taylor (1990) also assumed that strain
rates of muscles should be inversely proportional to ground
contact time. This implies that equal strains should occur, in
the leg muscles of different-sized animals. Again, experimental
confirmation would be welcome.

The following calculation highlights a possible problem
with the assumption of equal strains. The mechanical cost of
transport [work/(Mb � distance)] is about the same for runners
of all sizes (Heglund et al., 1982), and stride lengths in similar
gaits are proportional to Mb

0.38 (Heglund et al., 1974). Hence
the work required for a stride is proportional to Mb

1.38. The
work performed in a stride is (muscle stress � muscle strain
� muscle volume). Muscle stress in similar gaits is
proportional to Mb

−0.06, and muscle mass and volume are
proportional to Mb

1.03 (Biewener, 1989, 1990). If strains are
independent of body mass, the (positive and negative) work
performed by the muscles should be approximately
proportional to Mb

0.97, which does not match the observed
proportionality of work to Mb

1.38.
In flight, as in running, muscles have to exert forces to

counteract gravity. It is therefore reasonable to ask whether
Kram and Taylor’s hypothesis successfully predicts metabolic
power for flight. For foot contact time we can substitute the
duration of a wing beat, which is inversely proportional to
frequency:

Metabolic power � Mb � wing beat frequency·. (15)

For forward flight, frequency is proportional to Mb
−0.26

(Rayner, 1995a), giving predicted metabolic power
proportional to Mb

0.74, not too far from the observed
proportionality of Mb

0.83. For hovering euglossine bees, wing
beat frequency is proportional to Mb

−0.27, giving predicted
metabolic rate proportional to Mb

0.73, which is higher than the
observed proportionality of (in this case) Mb

0.58 (Casey and
Ellington, 1989). Kram and Taylor’s hypothesis (Kram and
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Taylor, 1990) works reasonably well for bird flight, but less
well for bees.

Conclusions
I have based this paper on very simple, long-established

models. There is scope for using more modern modelling
approaches; for example, because fish of different sizes are
often close to geometric similarity, it would not be too difficult
to use computational fluid dynamics to investigate the scaling
of swimming energetics. However sophisticated the methods,
the models must be kept conceptually simple, and the need for
anatomical and kinematic data must be kept to a minimum, if
the generality required for broad scaling studies is to be
preserved.

The most urgent need, however, in studies of the scaling of
energy costs in locomotion, is for better understanding of
the relationship between mechanical work and metabolism.
Some studies of locomotion have attempted to model this
relationship (Minetti and Alexander, 1997; Anderson and
Pandy, 2001; Sellers et al., 2003), but this approach has not
been used in scaling studies. It might, indeed, be premature to
apply this approach to the scaling of energy costs, until it has
a sounder foundation in muscle physiology. The problem is
that, as used in the cited papers, it uses data from isotonic
contractions to estimate energy costs in work loops. Hill’s
Equation, derived from isotonic experiments, does not predict
forces in work loops well (Askew and Marsh, 1998), and we
do not know whether the equations for metabolic rate work
well for work loops.

List of symbols
A wing area (flight) or total surface area (swimming).
C0 zero-lift drag coefficient
CD drag coefficient
f frequency
g gravitational acceleration
I moment of inertia
k induced drag factor
l length
Mb body mass
Re Reynolds number
r radius of a helicopter rotor
v speed
α aspect ratio
λ, τ, φ factors for length, time and force, in dynamically

similar motions
ρ density of air (flight) or water (swimming)
ω angular velocity
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