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The general subject of this review is the modeling of the
microscopic vascular (capillary) networks in animals, with
attention directed specifically to mammals. The modeling to be
dealt with is that associated with the derivation and discussion
of ‘scaling laws’ for these networks for mammals of vastly
different size. For reviews of the basic concepts see also
Dawson (1991, 2001, 2003). Experimental measurements on
the scaling of the vascular networks of mammals have been
reported by Schmidt-Nielsen and Pennycuik (1961), Gehr et
al. (1981), and Hoppeler et al. (1981).

Scaling laws of the kind to be considered here are important
in the general understanding of the vascular and cardiovascular
system. If found appropriate, such scaling laws can illustrate
that these systems all follow the same general pattern. Hence,
the study of these systems on the basis of measurements from,
say, the mouse can then reveal important information for the
human, as well as other mammals.

Broad features of the vascular system

The vascular system of mammals consists of two major
parts: the systemic part associated with transport of blood to
the body and the pulmonary part associated with transport of
blood to the lungs. The architecture is basically the same for
both parts. The systemic vascular system, for example, consists
of the aorta, carrying oxygenated blood directly from the left
side of the heart, and the smaller vessels branching from it.
The latter lead ultimately to the capillary networks spread
throughout the body. These vascular networks consist of very
small arteries (the arterioles) that take blood to the capillaries,
the capillaries themselves, through which exchange of products

with the tissues occurs, and then the very small veins (the
venules) that take blood away from the capillaries and
ultimately return it to the right side of the heart for circulation
in the pulmonary system for discharge of unwanted gaseous
products and for recharge of oxygen in the blood. The flow
system is illustrated in Fig.·1 (from Dawson, 1991). Attention
here will be directed mainly towards the systemic system,
although some reference will also be made to the pulmonary
system, as appropriate.

Modeling and scaling of the vascular networks
The systemic vascular networks of mammals consist of

some 10–100 capillaries in each network. In muscle tissue,
there are also reserve capillaries that open with exercise and
provide increased blood flow, as first shown by Krogh (1920).
This matter will be dealt with later; but for now, resting
conditions will be assumed.

Each network may be considered to have its capillaries in
parallel arrangement. Within each, viscous resistance to
blood flow dominates over inertial resistance, because of the
very small dimensions involved. Considering all the many
vascular networks on the systemic side of the circulation, the
net blood-pressure loss, ∆P, across them is therefore
described by the famous Hagen-Poiseuille equation for flow
in small vessels (Hagen, 1839; Poiseuille, 1840), which may
be written as:
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Vascular networks refer here mainly to the microscale
capillary networks of the vascular system of mammals,
although they may also be considered to include the small
arteries that feed the capillaries and the small veins that
drain them. The modeling of these networks for resting
mammals is reviewed within the context of describing
related scaling laws for mammals of vastly different size.
Basic processes are considered and alternative approaches
mentioned. All lead to the same scaling laws for the

radius, length and number of the vessels. The applicability
of the relations is illustrated using existing measurements.
Discussion is also included on the effect of strenuous
exercise on the scaling law for number of capillary vessels
and matters related to it.
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where µ denotes the viscosity coefficient of the blood, RC, LC

and NC denote ‘characteristic’ (or typical) radius, length and
number of capillaries, respectively, and QB denotes cardiac
output, that is, the volume of blood ejected by the heart into
the systemic vascular system over the time of a heart beat.

The blood pressures in the vascular system of resting
mammals are all essentially the same, as demonstrated many
years ago by measurements of Gregg et al. (1937), and
Woodbury and Hamilton (1937). The pressure drop across the
vascular networks may similarly be assumed to be independent
of mammal size. The blood viscosity is likewise known to be
independent of mammal size (Amin and Sirs, 1985), and the
cardiac output is known to be proportional to the product of
heart rate and mammal mass (Holt et al., 1968). The following
proportional relation may therefore be written from Equation
(1):

where ω denotes heart rate, Mb denotes mammal mass (with
Mb

0 denoting no dependence on it), and where the symbol �
denotes proportionality.

In addition to this relation, another may be written
associated with the fact that the total blood volume in
mammals varies directly with mammal mass, as shown by
Brody (1945). The total blood volume in the capillary system,
as part of the whole, can therefore similarly be assumed to vary
in this manner. The following relation results:

NCRC
2LC� Mb . (3)

Direct evidence for the latter relation exists for the pulmonary
capillaries (Gehr et al., 1981) and there is no reason to expect
differently for the systemic capillaries. Relations (2) and (3)
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thus provide two relations, backed by measurement, between
the four unknown quantities RC, LC, NC and ω. Two additional
relations are thus needed to complete the description. These
may either be empirical or theoretical. The latter is first
considered. The following discussion of these relations is
based on earlier work by the author (Dawson, 1991).

Additional relations

The variables associated directly with the ‘characteristic’
capillary system of resting mammals can be expected to apply
to the capillaries of any organ of the body. There is, in fact,
some evidence for this in the case of the lungs, the kidneys and
the muscles, as will be discussed later. Thus, the number of
capillaries in the heart may be assumed to be proportional to
the number of capillaries NC associated with the relations (2)
and (3). The number of cardiac cells in the heart can also be
considered to be proportional to the number of capillaries
supplying them. The volume of a single cardiac cell can
therefore be expected to be proportional to the ratio of heart
mass to capillary number; or, since heart mass and body mass
are proportional (Brody, 1945), the volume of a single cardiac
cell can be considered proportional to the ratio Mb/NC. The
characteristic length d of a cell is therefore expressible as

d � (Mb/NC)1/3 , (4)

assuming all dimensions scale the same, like in fact the
dimensions of the heart, which all scale as mammal mass to
the power 1/3 (Dawson, 1991, 2001).

Now, cardiac tissue consists mainly of contraction fibers
which, when excited, provide the pumping action of the heart.
The fibers consist of series connections of small cardiac cells,
separated by membranes. Contraction is initiated in the upper
heart and spreads over the heart through progressive influx of
ions into the cardiac cells, making the fibers contract. The
required two relations follow from consideration of the resting
heart rate as determined by the diameter of the cardiac fibers,
with the latter assumed the same as the linear dimension d
defined above; and from consideration of the influx of ions into
the fibers.

The contraction (propagation) speed in cardiac fiber is
assumed, like nerve fiber, to be expressible as a power-law
relation with fiber diameter; that is, as db where ‘b’ denotes a
constant. Based on experimental studies with isolated nerve
fibers (generally considered analogous to heart fiber), a value
of ‘b’ can be expected to be between 0.5 and 1.0 (Jack et al.,
1975). A value of ‘b’ equal to 2/3 was determined appropriate
previously (Dawson, 1991). Now, the period between
heartbeats may reasonably be assumed to be proportional,
under change of scale, to the ratio of heart length (proportional
to mammal mass to the power 1/3) to contraction speed;
and the heart rate must thus be equal to the reciprocal of this
period. The following relation, therefore, results from these
considerations (Dawson, 1991):

ω � Mb
–1/9 NC

–2/9 . (5)

A second relation follows from consideration of the
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Fig.·1. Branching of systemic vessels in mammals illustrating
vascular networks of capillaries and associated arterioles and venules.
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diffusion-like transfer of ions into the cardiac cells over a
period of heartbeat. The mass, m, of ionic substance diffusing
into (or out of) a cardiac cell can be expected to depend on the
dimension, d, of the cell, the diffusion coefficient D (units of
area per time), the concentration difference ∆C (units of mass
per volume) between concentrations outside and inside the cell,
and the heart rate ω (units of reciprocal time). The relation for
m may be written in dimensionless form (so as to be
independent of particular units), as

where f(–) denotes a general function. The left-hand side of
this equation, with concentration difference ∆C assumed scale
invariant, is proportional to the diffusion mass per unit cell
volume, and this may be expected to be independent of
mammal size. With the diffusion constant D also scale
invariant, as expected, it can be seen that the product of heart
rate and square of cell dimension must likewise be constant
under change of scale. Thus, heart rate is predicted to be
inversely proportional to the square of the heart-cell
dimensions. Using the definition of cardiac cell dimension of
relation (4), the follow relation results (Dawson, 1991):

ω � Mb
–2/3 NC

2/3 (7)

As may be confirmed with simple algebra of proportions,
relations (2) and (3), together with the two expressions of
relations (5) and (7), provide the solution for the scaling laws
for the characteristic capillary vessels in the form:

RC � Mb
1/12 , (8a)

LC � Mb
5/24 , (8b)

NC � Mb
5/8 . (8c)

The scaling relation for the resting heart rate is also determined
from the relations and that for cardiac output from its
previously noted connection with heart rate, that is,

ω � Mb
–1/4 , (9a)

QB � Mb
3/4 . (9b)

Experimental evidence for the relation for heart rate has existed
for many years (Rihl, 1926; Clark, 1927). More recent work
by Holt et al. (1968) provides experimental support for both
the heart-rate and cardiac-output relations.

It is worthwhile to note the differences that arise if different
values of ‘b’ are used for the exponent in the above
contraction-speed relation leading to relation (5). For the lower
value of 0.5, the equations predict that heart rate should vary
with mammal mass to a power of –4/15, that is, a power of
about –0.27; and that the cardiac output should vary with
mammal mass to a power of 11/15, that is, a power of about
0.73. For the higher value of 1, the equations predict an
exponent value for heart rate of –2/9, that is, a power of –0.22;
and that for cardiac output of 7/9, that is, a power of about 0.78.
The differences are not especially significant, and for either
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choice of exponent ‘b’, the relations for heart rate and cardiac
output, if determined experimentally, could reasonably be
rounded to the exponent values of –1/4 and 3/4, respectively. 

The value of 2/3 for the exponent ‘b’ in the contraction-
speed relation, noted in connection with relation (5), was
chosen earlier by the author (Dawson, 1991) because it led to
the relations for cardiac output and heart rate, as generally
accepted. Interestingly, if an extreme value for ‘b’ of zero is
assumed, the resulting expressions are that heart rate varies as
mammal mass to the power –1/3 and that cardiac output varies
with mammal mass to the power 2/3. The latter is unlikely,
based in part on the work of Holt et al. (1968).

In addition to showing that the scaling laws for the capillary
networks, as well as the scaling laws for cardiac output and
heart rate, can be determined from fundamental considerations,
it has been illustrated here that heart rate varies inversely as
the square of the diameter of the cardiac contraction fibers. The
latter offers an explanation (and the only one that I am aware
of) as to how and why the resting heart rate of, say, the mouse
is many times that of the human; that is, about 600·beats·min–1

for mouse and about 60·beats·min–1 for human.
Additional means for obtaining the above scaling laws have

been considered earlier and involved use of empirical relations
for heart rate (reciprocal 1/4 power relation) and oxygen
consumption rate (3/4 power relation), as described by Dawson
(2001, 2003). This approach leads to the same scaling laws as
relations (8a–c).

Some measurements

It may first be noted that direct experimental measurements
are limited regarding the systemic side of the circulation, but
the data available are consistent with the theory described here.
In particular, there are the counting measurements of Kunkel
(1930) for number of nephrons in the kidneys of mammals of
various sizes. The nephron is the basic unit in the kidney and
consists of a collection of capillary vessels. The number of
capillaries per nephron can be expected to be the same for any
mammal, and hence a count of nephrons in a kidney can be
expected to be proportional to a count of capillaries in the
kidney. The measurements of Kunkel (mouse to ox range)
were analyzed by Adolph (1949) and shown to obey a power
law relation, with mammal mass raised to the power 0.62,
which may also be taken as 5/8, in agreement with relation
(8c).

There are also measurements of Kunkel (1930) concerning
the diameter of renal capsules of the nephrons that indicate
variation with mammal mass to a power of essentially 1/12
(Adolph, 1949). This variation may be taken as evidence for
the scaling relation for  relation (8a), since the diameter of the
renal capsules can be expected to be proportional to the radius
of the contained capillaries within them.

In addition, there are measurements of rate of urine output
of resting mammals (mouse to elephant range) that indicate
variation with mammal mass to a power of essentially 5/6, as
noted by Adolph (1949). Net fluid flow from the capillaries in
the kidneys, insofar as scaling is concerned, can be expected

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1690

to be proportional to the product of capillary number NC and
capillary length LC as discussed earlier by the author (Dawson,
1991). Relations (8b,c) provide, in fact, the scaling exponent
5/6.

Finally, on the systemic side, there are measurements of
capillary density in muscles by Schmidt-Nielsen and
Pennycuik (1961) that presumably apply to the resting state, as
considered here. Capillary spacing in resting muscle can be
expected to be proportional to capillary radius, and capillary
density can therefore be expected to be inversely proportional
to the square of capillary radius; that is, as mammal mass
to the power –1/6, based on relation (8a). The relation just
described was recently confirmed from theoretical
considerations (Dawson, 2003). The measurements of
Schmidt-Nielsen and Pennycuik (bat to pig range) support this
variation as illustrated in Fig.·2 for capillary density in the
masseter (jaw) muscle of mammals. Similar agreement exists
for measurements of Schmidt-Nielsen and Pennycuik (1961)
regarding resting capillary density in the gastrocnemius (leg)
muscle of mammals (Dawson, 2003).

For the pulmonary side of the circulation, measurements
exist for capillary volume and surface area (Gehr et al., 1981).
These data (shrew to cow range) may be used to obtain data
for capillary radius and net capillary length (Dawson, 1991).
Typical values for the capillary radius are shown in Fig.·3 and
support predictions from relation (8a). In average terms, the
volume of the capillaries was found by Gehr et al. (1981) to
be directly proportional to mammal mass, and their surface
area was found proportional to mammal mass raised to about
the power 0.93 (average of two sets of data). These results
imply that capillary radius RC and net capillary length NCLC

scale with mammal mass to powers 0.07 and 0.86, respectively,
in good agreement with the theoretical value from relations
(8a–c) of 0.08 and 0.83.

The basic scaling relations (8a–c) may also be derived by
replacing the two theoretical relations (5) and (7) by the

empirical relation for heart rate, and either of the above
experimentally confirmed relations for capillary number and
capillary radius.

Oxygen consumption rate
Among the many biological processes involved with the

vascular networks, the most important is perhaps the transfer
of oxygen from the blood to the surrounding tissues. The
resting oxygen consumption rate of mammals (mouse to
elephant range) is known to obey an average power-law
relation with mammal mass raised to the power 3/4 (Kleiber,
1932; Brody and Procter, 1932; Brody, 1945). This relation
applies over a wide range of mammal size, but, insofar as
empirical relations are concerned, may be subject to
modification for smaller mammals (Bartels, 1982; Heusner,
1991; Dodds et al., 2001). Interestingly, the careful work of
Bishop (1999) on mammals and birds indicates no such
deviations.

The oxygen consumption rate is considered in terms of the
rate of oxygen transfer VO∑ across the capillaries. This is
described by the diffusion equation: 

VO∑ � P0(1–P1/P0)NCLCRC/HC , (10)

where P0 denotes the oxygen pressure in the blood, P1 denotes
the oxygen pressure immediately outside the capillary, and HC

denotes the wall thickness of the capillaries. Now, as discussed
in earlier work (Dawson, 2003), plausible assumptions can be
made that the ratios P1/P0 and RC/HC are relatively independent
of mammal size, at least when a wide range of mammal size
is considered. In particular, the first ratio can be expected to be
relatively independent of scale since a change in oxygen
pressure in the blood is likely to be accompanied by a
corresponding change in oxygen pressure in surrounding
tissue. The second ratio can be expected to be constant, or
nearly so, in order to maintain similar stress in the capillary
walls from the scale-invariant blood pressure. Variations from
either of these assumptions over a small range of size may, of
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0

0.001

0.002

0.003

0.004

0.005

0.006

0 0.5 1 1.5 2 2.5
Mammal mass to the 1/12th power

C
ap

ill
ar

y 
ra

di
us

 (
m

m
) 

1/12th 
relation

Shrew

Cow

Dog

Mouse

Fig.·3. Data for capillary radius in lungs, with only selected mammals
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course, account for deviations from the average mentioned
above. Adopting the assumptions, relation (10) reduces to the
expression:

VO∑ � P0NCLC . (11)

Moreover, as already known (Dawson, 1991) on the basis of
measurements by Schmidt-Nielsen and Larimer (1958), the
oxygen pressure P0 in the blood can be considered to be
proportional to mammal mass to the power –1/12 (mouse to
mule range). This correlation is illustrated in Fig.·4, together
with an additional measurement for the elephant (Bartels et al.,
1963). With the product NCLC varying with mammal mass to
the power 5/6, as required by relations (8a–c), the oxygen
transfer rate is thus seen to vary with mammal mass to the
power 3/4, in accordance with measurements over a broad
range on mammal size.

It may be noted (at least within the writer’s limited
understanding) that ‘constructal theory’, based in part on the
assumption that vascular formation is an optimized flow
architecture, also provides the power 3/4 for resting oxygen
consumption rate (Bejan, 1997, 2000).

Application of theory to drug therapy
A practical application of capillary scaling involves

consideration of therapeutic drug concentrations in the blood
of small mammals as they relate to humans. A specific example
is provided by the chemotherapy drug methotrexate, which is
a widely used (non-metabolized) drug in the treatment of
cancer. Dedrick et al. (1970) showed that data from various
mammals could be consolidated into a broad correlation by
plotting the ratio of drug concentration in the blood to initial
dose as a function of time since injection, when the latter was
divided by mammal mass raised to the power 1/4. Since the
blood-circulation time is proportional to mammal mass to the
power 1/4 (Dawson, 1991), the resulting time scale is simply

proportional to circulation time. It may be anticipated that
some refinement could be gained by including the capillary
geometry and scaling into the correlation.

The drug is assumed to be injected on the systemic venous
side in a relatively short period of time. On passing through a
general capillary, the classical view (Guyton, 1971) is that the
blood initially expels some water and drug to surrounding
tissue (Starling, 1896; Pappenheimer et al., 1951). Near the end
of the capillary blood flow, some of the mixed drug is
reabsorbed (see Fig.·5; from Dawson, 1991). Of course, in
the event of fluctuating osmotic pressure, some capillary
exchange, back and forth, could be expected along the entire
length of the capillary.

In either case, a simplified process may be assumed for
scaling purposes where the entire drug is removed by the
capillaries during the initial cycle and some of the drug
reabsorbed. In this case, the drug concentration at the injection
site, after the initial cycle, will equal the amount reabsorbed.
This process would perhaps lead to a reduced concentration at
the site, compared with the actual process. However the same
percentage difference may be expected (for a non-metabolized
drug) for all mammals so that scaling is still possible in the
present case. 

The concentration of drug, C (in units of mass per volume of
blood), in the blood after the first complete cycle of blood
circulation in the above-simplified process will be proportional
to the net volume of drug reabsorbed per unit volume of blood.
Flow into and out of capillaries can be considered for scaling
purposes (Dawson, 1991) to be proportional to a scale-
independent constant and the net capillary length, that is, BNCLC,
where B denotes the filtration-absorption constant (units of area
per time). The concentration of drug reabsorbed over the time,
T, for a complete circulation is thus proportional, for scale-
independent initial concentration, to the ratio NCLCT/VB, where
VB denotes total blood volume. For any arbitrary initial drug
concentration D0, the ratio is D0 NCLC/VB)T.

With additional cycles of blood circulation treated in the

0

20

40

60

80

100

0 0.5 1 1.5 2

Mammal mass to the –1/12 power

O
xy

ge
n 

pr
es

su
re

 (
m

m
H

g)

Mouse

Mule
Rat

Dog

Human

–1/12th 
relation

Goat

Rat

Elephant

Opossum

Fig.·4. Data for oxygen pressure in blood (75% saturation) of
mammals, with only selected mammals identified. Data mainly from
Schmidt-Neilsen and Larimer (1958). Value for the elephant is from
Bartels et al. (1963). 1·mmHg � 133.3·Pa.

Outward pressure
2.67 kPa

Inward pressure
3.73 kPa

Outward pressure
4.93 kPa

Inward pressure
3.73 kPa

Water

Capillary

Plasma

Water

Outflow

InflowOsmotic pressure

Pr
es

su
re

 (
kP

a)

Fluid pressure

4.93

2.67

3.73

Fig.·5. Classical view of exchange of water and dissolved substances
with surrounding systemic tissue. (Data source: Guyton, 1971.)

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1692

same way, the effective initial dosage would (after the manner
of Dedrick et al. 1970) be reduced by the factor f(t/T), where
f(–) denotes an unspecified function. Thus, concentration of
drug in the blood at any time, t, is described for scaling
purposes by the relation:

Now, if the ratio t/T is fixed, the ratio on the left-hand side of
this relation will be proportional to the first ratio on the right.
The product NCLC varies with mammal mass to the power 5/6,
as indicated by relations (8a–c), the total blood volume VB

varies directly with mammal mass (Brody, 1945), and the time
for circulation T varies as mammal mass to the power 1/4, as
indicated previously. The desired scaling relations may be
written, for example, for the human relative to a smaller (or
larger) mammal as

where subscripts ‘H’ and ‘M’ denotes values for the human
and mammal, respectively.

Fig.·6 illustrates application of this scaling law in projecting
measurements from the mouse (mass of 0.022·kg) to the human
(mass of 70·kg) for the plasma concentration of methotrexate in
the blood as a function of time. The basic measurements for the
mouse, as used in developing the results of Fig.·6, are due to
Dedrick et al. (1970) and the data for the human are due to
Henderson et al. (1965). The solid curve shown in Fig.·6 is a
simple ‘best-fit’ power-law expression for comparison purposes.
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The agreement of the scaled data from the mouse with that
of the human, as shown in Fig.·6, is indeed very good. The
factor (MH/MM)1/12 in the scaling relation (13a) represents the
effect of capillary process and is equal to 1.96. Without this
factor, the predictions from the mouse would thus be reduced
by a factor of about 2. Overall, the factor can be seen to
improve the predictions over what they would be otherwise.

Effects of strenuous exercise of mammals
An interesting aspect of the work in the present discussion

is that the scaling laws for the radius and length of the
capillaries forming the vascular networks can be determined
on the basis of the resting condition of mammals. This aspect
has been noted earlier (Dawson, 2003). Since the size of the
capillaries cannot change with exercise, there can only be one
set of scaling laws for these, and resting conditions provide
these laws. Of course, resting conditions also provide the
scaling laws for resting heart rate, cardiac output and oxygen
consumption rate, as illustrated here.

For a number of years, it was generally thought that all
scaling relations associated with the physiological functions of
mammals (for example, cardiac output, oxygen consumption
rate and heart rate) were the same for both resting and exercise
states. This could be the case if such physiological variables
increased during exercise by the same factor for all mammals.
This would change the proportional factor in the scaling
relations, but leave the scaling exponents with body mass
unchanged. This is now known not to be the case, as a result
of work by Baudinette (1978), Taylor et al. (1981), Weibel et
al. (1991) and Bishop (1997, 1999), among others.

In particular, the oxygen consumption rate of mammals (bat
to steer range) in strenuous exercise has been shown by Bishop
(1999), in careful analysis of existing data, to vary with
mammal mass raised to the power 0.88, that is, a power of
about 7/8. This result is consistent with earlier work of Weibel
et al. (1991) and the more recent work of Weibel et al. (2004).
The power 7/8 is also consistent with ‘constructal theory’ and
the assumption that flow systems survive by forming easier
access to the required flow (Bejan, 2000).

On the capillary scale, allowance appears to be made for
exercise by increased activity of the capillary network through
openings of reserve capillaries in the muscles (Krogh, 1920).
This will change the scaling law for operative number of
capillaries in the body, but will leave the scaling laws for
dimensions of the capillaries unchanged. This view is, perhaps,
consistent with the principle of ‘symmorphosis’ (Taylor and
Weibel, 1981; Weibel et al., 1991; Hoppeler and Weibel, 1998)
requiring (in simple terms) that nothing more be provided in
the design of mammals than that required for their purposes.

In terms of the present work, the new condition for scaling
of the average capillary number is a modified form of relation
(11) such that

VO∑ (max) � P0N*
CLC , (14)

where N*
C denotes the modified capillary number for exercise.
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With P0 and LC varying, as in the resting state, with mammal
mass to the powers –1/12 and 5/24, respectively, and maximum
oxygen consumption rate varying with mammal mass to the
power 7/8, it can be seen that the scaling relation for the
modified capillary number is

N*
C � Mb

3/4 . (15)

This relation corresponds to a ‘weighted’ average for scaling
of the number of capillaries in the body. The concept of a
weighted average is consistent with recent discussion by
Weibel (2002) and work of Darveau et al. (2002) on the rate
of oxygen consumption during exercise. When compared with
the resting state, with capillary number proportional to
mammal mass to the power 5/8, the implication is that the ratio
of average capillary number in strenuous exercise to resting
number increases in proportion to mammal mass to the power
1/8. Perhaps gravity enters here in that larger mammals have
to work harder than small mammals in overcoming their
weight (as opposed to their mass) in exercise.

Of course, with strenuous exercise, resting-state similarity
in the physiological response of mammals is lost. With fixed
scaling of radius and length dimensions of the capillaries, it is
impossible to satisfy all the earlier relations required for similar
response among resting mammals. In this regard, capillary
density in muscles that includes both resting and reserve
capillaries (for strenuous exercise) cannot be expected to
follow the simple scaling law noted earlier where resting
capillary density varies with mammal mass to the power –1/6.
This observation is consistent with sophisticated measurements
of Hoppeler et al. (1981), which presumably detected both
active and inactive capillaries as discussed recently (Dawson,
2003).

In spite of the loss of resting-state similarity in exercise, it
is worthwhile to note that cardiac output in strenuous exercise
appears to vary in the same way as oxygen consumption rate
(Bishop, 1997), namely as mammal mass to the power 7/8. In
this case, the pressure drop across capillary networks is still
scale invariant like in the resting state, as can be seen from
Equation (1). The rate at which energy is dissipated by viscous
(frictional) resistance in the capillaries is proportional to the
product of pressure drop and cardiac output. Considering all
the capillary networks, this can then be seen to be proportional
to the rate of oxygen supply to the body and, in particular, also
to the heart since heart mass and body mass are proportional.
A similar situation exists for the resting state. The ratio of rate
of energy dissipation in capillary blood flow to rate of oxygen
(fuel) supply to the heart is thus invariant with scale for both
exercise and resting, consistent with good design practice.

This last matter may perhaps have implications regarding
work by West et al. (1997), Banavar et al. (1999) and Dodds
et al. (2001) on the efficiency of the design of the vascular
networks of mammals. It may also have relevance in
constructing a general basis for similarity in the strenuous-
exercise state that provides, for example, the 7/8ths power law
for oxygen-consumption rate, like that provided here for the
3/4-law for the resting state.

Concluding remarks
Modeling of the vascular networks of mammals has been

reviewed here, with the expressed goal of discussing relevant
scaling laws for resting mammals of vastly different size. Both
geometry and process have been considered. Results have
been shown to be in good agreement with measurements for
a wide range of mammal sizes. A main conclusion to be drawn
from this review is that similarity exists for the vascular
networks of mammals, as well as for related physiological
processes.

Overall, the design of the vascular networks of mammals
appears to be the same, with predictable adjustments for scale
for resting mammals and some additional adjustment for
exercise. An interesting question that presents itself is why the
design follows essentially the same pattern for all mammals.
The answer would appear to be simply because it is the ‘best’
pattern, all things considered. In this regard, it has been noted
that, for both resting and strenuous exercise, the rate of energy
dissipation in blood flow in the vascular capillary networks
appears to be proportional under change of scale to the oxygen
rate supplied to the heart. The ratio of the two is thus invariant
under change of scale for both resting and exercise.

I am grateful to the referees for their valuable comments
and criticisms of the original manuscript.
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