Biology 325 - 2005
Guest Lectures in Animal Locomotion

Lectures 1 & 2: John Gosline
* The metabolic cost of terrestrial and aquatic locomotion;
« Cost of transport; scaling of metabolic cost.
« Mechanics of terrestrial locomotion: walking and running.

Lectures 3 & 4: Margo Lillie
¢ Mechanical properties of tendon
« Tendon elasticity in wallaby hopping
« Mechanical behaviour of muscles: positive and negative work
* Role of muscles in running

Lectures 5 & 6: Bob Shadwick
* Muscle work-loops
«  Structure and mechanics of muscle in swimming fish
« Work-loop control in aquatic vs. terrestrial movement

http://www.zoology.ubc.ca/bpg/courselinks.htm
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COST OF TRANSPORT
Wikg + m/s = Jlkgm
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Metabolic Power in Fish Swimming
As determined by Oxygen Consumption
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J. R. Brett,
Fisheries Research Board of Canada Biological Station, Nanaimo, B.C., Canada
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Cost of Transport Scales with Body Mass, M-0-33
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The cost of transport can be expressed as the force (N) required to move a 1
kg fish at a particular speed. So for a 1kg salmon moving at 1 m/s, the
metabolic “force” per kg will be about 0.7 W/kg.

Let’s estimate the DRAG FORCE the fish will experience in water to see if we
can account for this metabolic “force” required to move the fish at 1 m/s.

Farag = %2C4 PAV2

V=1.0 m/s; A~ 0.006 m3

Puater = 1000 kg/m?

135N
———— 0.03N
—— > 0.15N

Cd = 0.45 (sphere)
0.01 (streamlined body)
0.05 (fish)

The metabolic “force” should be larger than the mechanical force because
of the loss in the conversion of chemical energy (metabolism) into
mechanical thrust. A reasonable guess for the efficiency of this conversion
is about 20%, making the metabolic “force” roughly equal to 0.75 N/m.

Note, this value is virtually identical to that shown on the graph.
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Force and Energy in Level Movement at Constant Velocity

Gravitational Force (Fg =mg)

weight
Gravitational Energy (E;=mgh) ——— Ah=0, E;=0

Acceleration Force  (F, = ma) —_ a=0, F,=0



Height is NOT Constant in terrestrial Locomotion

Walk Height of Centre of Mass = P.E.

A—
1 step

Height of Centre of Mass = P.E.

1 step

Velocity and Height are NOT Constant in terrestrial Locomotion
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Velocity and Height are NOT Constant in terrestrial Locomotion
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Velocity of Centre of Mass = K.E.

Height of Centre of Mass = P.E.

Bouncing Ball

Ballistic Flight Increases
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Where is Elastic Energy Stored in the Leg?
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Where is Elastic Energy Stored in the Leg?

Muscles: Bone is so rigid that there

is essentially no bending
of the bones during
normal movement.

‘/Very little energy is stored

Tendon: —, ‘\ in the bones.

Elastic Energy is Stored Primarily in the Stretching of
the Tendon-Muscle System that Controls the
Extension of the Ankle

Some muscles are
“conventional”,
with parallel fibres
that shorten during
function.

Tendon; —— '\

Elastic Energy is Stored Primarily in the Stretching of
the Tendon-Muscle System that Controls the
Extension of the Ankle

Some muscles are
“conventional”,
with parallel fibres
that shorten during
function.

Tendons may /

appear to be part
of a muscle

Other muscles
have different fibre
patterns, and their
functions are more

complex
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Biology 325 - 2005
Guest Lectures in Animal Locomotion

Lectures 1 & 2: John Gosline
+ The metabolic cost of terrestrial and aquatic locomotion;
* Cost of transport; scaling of metabolic cost.
* Mechanics of terrestrial locomotion: walking and running.

Lectures 3 & 4: Margo Lillie
* Mechanical properties of tendon
« Tendon elasticity in wallaby hopping
* Mechanical behaviour of muscles: positive and negative work
* Role of muscles in running

Lectures 5 & 6: Bob Shadwick
*  Muscle work-loops
»  Structure and mechanics of muscle in swimming fish
*  Work-loop control in aquatic vs. terrestrial movement
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Simplified Anatomy of Wallaby Ankle

Gastrocnemius
Knee — / muscle

Achilles tendon

Ankle
\

Treadmill \

Rotation Forces on Lever at Ankle

Reducing 6 tends to stretch
muscle and tendon

GRF balanced by
tensile force
in muscle and tendon

Ground reaction force
rotates ankle,
reducing 0

GRF 0

’ Pivot




How much energy can be stored in tendon and muscle?
Energy = Work = Force x Length

Amount of force and stretch
depends on
mechanical properties

Ground reaction force of muscle and tendon

rotates ankle,
reducing 6

GRF 0

’ Pivot

Mechanical Properties of a Tendon
Use in Vitro Tests

108 F Break

Stiffness = E
Stress
(N/m2)

Force
Stress =

Area
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€, Strain in= ————
’ Strain = el length




Mechanical Properties of a Tendon
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E A Stress o
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(N/m?2) A Stress
E=
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Strain
Energy to Break a Tendon
Energy = Work = Force x Distance
Tendons can store
108 | Break
~2,000 J/kg
Work in=0.5 G € vol Steel springs store
~130 J/kg
Stress
(N/m2) vol = volume of tendon
vol = length x area
0 1 1
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Using a Tendon as a Spring:
Energy Recovered on Recoil

|

0.5x108
Work out =0.5 G € vol x 0.93
Hatched green area
under unloading
curve shows
Stress energy recovered
(N/m2) \ from tendon
/ \\\\\\\\ Get 93% of energy put in
\ =RESILIENCE
0 —
0.02 0.04 0.06
Strain
Using a Tendon as a Spring:
Energy Recovered on Recoil
0.5x108
Red area between Clockwise loop
curves shows AN
energy lost energy lost
(S’\tln;er;szs) + =7% of stored energy

0 0.02 0.04 0.06

Conclude: In vifiifests indicate that
tendons are effective springs




In Vivo Study of Wallaby Hopping

We already know that metabolic power is independent
of speed.

Question:
How does mechanical work change with speed?

Experimental Approach:
1. Get force (stress) and length (strain) data
i muscle
i tendon
2. Calculate mechanical work done

Experimental Study: Wallaby Hopping on Treadmill

Measure:
1. Force on muscle and tendon using tendon transducers
2. Tendon length and area
3. Muscle fibre length using sonomicrometer
4. Electromyography (EMG)

Sensor
TENDON BUCKLE

Measures force on tendon

+ 'E' shaped transducer
+ Tendon force bends sensor

Tendon buckle




Experimental Study: Wallaby Hopping on Treadmill

Measure:
1. Force on muscle and tendon using tendon transducers
2. Tendon length and area
3. Muscle fibre length using sonomicrometer
4. Electromyography (EMG)

CALCULATE TENDON WORK
Work out =0.5 G € vol x 0.93
Stress
cc=F/A

+e=0/E

* vol = length x area
* resilience = 0.93

Experimental Study: Wallaby Hopping on Treadmill

Measure:
1. Force on muscle and tendon using tendon transducers
2. Tendon length and area
3. Muscle fibre length using sonomicrometer
4. Electromyography (EMG)

Receiving electrode

SONOMICROMETRY
Calculate length from transit time

* Measure transit time, At
+ Speed of sound = 1540 m/s
+ Length= At x 1540

Emitting electrode gives 5 MHz sound pulse




Energetics of Wallaby Locomotion
Tendons Do the Work

3 -
Total work
2 \ Tendons d
endons do
Work per Hop 92%-97%
) of the work
1 L
0 Muscle work
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Biology 325 - 2005
Guest Lectures in Animal Locomotion

Lectures 1 & 2: John Gosline
* The metabolic cost of terrestrial and aquatic locomotion;
» Cost of transport; scaling of metabolic cost.
* Mechanics of terrestrial locomotion: walking and running.

Lectures 3 & 4: Margo Lillie
Dealing with Gravity—Using Tendons and Muscles to
Improve Locomotion Energetics
* Mechanical properties of tendon
* Tendon elasticity in wallaby hopping

* Mechanical behaviour of muscles: positive and negative work
* Role of muscles in running

Lectures 5 & 6: Bob Shadwick
*  Muscle work-loops
«  Structure and mechanics of muscle in swimming fish
*  Work-loop control in aquatic vs. terrestrial movement

Muscle Force-Velocity Relationship

Negative Work Positive Work
Lengthening Shortening
— —>

Fo=25x10% wfo»

Force
(N/m2)

0 05V, Vo
A

isometric Velocity (lengths/s)
contraction



Q Positive Work Loop

Counter-
Shorten clockwise loop
A 3 means
energy gained
Relax force
Force Develop force
(N)
0
Green area inside Lengthen
loop shows energy
gained from actively Muscle Length (mm)

shortening muscle

?\ Negative Work Loop
Clockwise loop
Y Lengthen means
energy lost
Develop force
Force Relax force
(N)
0 7

Green area inside
loop shows energy lost

in an activated muscle Muscle Length (mm)
that is passively pulled

Shorten



Isometric Contraction

Myosin cross-bridges
act like springs
over short distances

Develop force

Force
) Relax f ;
elax torce Force-Velocity Curve

0 Force

Ideally, no energy is  Muscle Length (mm)
lost or gained.
Little work is done

by active muscle : Velocity

isometric
contraction

Muscle Power
Power = work / time

Power = (Force x Distance) / time Force-Velocity Curve

Peak at 0.3V,
: Force
200 t+
v
Muscle Power Velocity
Output 100 |
(W/kg)
0 ! *
0 0.5V, Vo

Velocity (lengths/s)



Muscle Efficiency

Mechanical Power Output

Peak at 0.2V, Efficiency =
. Metabolic Power Input

25% -

Muscle Efficiency

0 1 N
0 0.5V, A

Velocity (lengths/s)

In Vivo Study of Turkey Running

We already know that tendons supply energy for running.

Question:
What are the muscles doing in vivo?

Experimental Approach:
1. Get force (stress) and length (strain) data
2. Calculate mechanical work done
3. Run turkey on level and incline



Turkey Running on Level

Swing Stance

30
Muscle Fascicle Length
(mm) Little or no shortening
4
20
EMG % Activated
100
Tendon and Muscle -
Force S0 [T Large force
(N)
of
0 0.2 0.4

Tendon Contributes More to Total
Work than Muscle

10

Total work
Work per step \
(kg 5 L

Tendons do
> 60 %
of the total work

Work done by
shortening muscle

0 2 Speed (m/s) 4

Net work = positive work (shortening) + negative work (lengthening)
Net muscle work ~ 0




Turkey Running on an Incline

Swing Stance

30F
Muscle Fascicle Length
(mm) Shortenin
| — 9
\\‘/,_
aoF e
EMG —+r“ﬁ—<— Activated earlier
100
Tendon and Muscle <
Force 501 ™™ Only slightly larger force
(N)
o -
0 0.2 0.4

Muscle Use on Level and Incline

Only slightly larger

Force-Velocity Curve force on incline
Force 4
100
Fo 4—‘
501
0.35F, |« y 0 _\—F//\JL
0 0.2 0.4
R/ A i
: Velocity Time (s)

No shortening  Shortening _ﬁwﬁ_
(Level) (Incline) f
EMG activated earlier on incline

Conclude: More muscle fibres must be used on incline,
increasing the metabolic cost



Muscle Work Loops in Stance Phase
for Running Turkey

Level Incline
100 ]
Muscle does
Muscle work and
Fo’\rlce 50 [ Muscle generates adds 318 mJ
(N) a force and
dissipates 6 mJ
0 T T T l l T T T
0 0.1 0.2 0 0.1 0.2

Strain (AL/L,) Strain (AL/L,)

Turkey ankle muscles act as a spring on level
and as a motor on incline.

Muscle Work Loops in Stance Phase
for Hopping Wallaby #3

Gastrocnemius muscle

Level Incline
200 |
Muscle
Force Muscle
(Ny 00T Muscle dissipates
dissipates 114 mJ
209 mJ
0 T T T l l T T T
0.9 0 0.1 0.9 0 0.1

Strain (AL/L,) Strain (AL/L,)



Muscle Work Loops in Stance Phase
for Hopping Wallaby #2

Plantaris muscle

Level Incline
200 |
Muscle
Force Muscle
(N) 100 |- Muscle dissipates
dissipates 19mJ
27 mdJ
0 T T T T T T
0 0.1 0.2 0 0.1 0.2
Strain (AL/L,) Strain (AL/L,)

Wallaby ankle muscles act as a spring or brake on level and on incline.
Do more proximal leg muscles act as motors on incline?
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Eels on land and in water

Muscle activity
aquatic terrestrial

0.6 8L o

. I | 100 400
075 61 wefiimpovsnlpimes el |,_uons o7 |

vlts

. 2

400 ms 500 ms

EMG On land muscle activity and amplitude
% are greater.

In water, there is a delay in the
shortening of muscle after activation

time—»
Muscle strain

Eels on land and in water

3
N 0.15 terrestrial
2 a
= 4 =
g ‘aquatic go.l
g =
= 1 terrestrial fg)'()5 aquatig
= 3
0 0
0 0.5 1.0 0 0.5 1.0
Speed (length/sec) Position on body (L)
aquatic
w
e =
_—

Muscles undergo larger
amplitude contractions

terrestrial



Rats!

Aquatic Terrestrial
1 2 3 4 5 L2 3 4 5
R
> % 2
! :
120 thrust recovery stance swing
5
o .
g hip
5190 b
5| 60
= 3 4knee 5 nee
time —» time —»
Rats!
< walk trot gallop SWIM
2
QL o
0o =
s &
2 g
[$]
on land v. /ateralis is used as a force
o . . .
Q}rz}\ generator, active when lengthening, (i.e.
& negative work)
N
w

in water v. lateralis is used to generate
positive contractile work



Summary:

A major difference between aquatic and terrestrial locomotion is
gravity

Muscle performance is controlled by the phase and duration of
activation

Muscle performance is also influenced by cycle frequency or
shortening velocity

Muscle active primarily during lengthening absorbs energy
(negative work)

Muscle active primarily during shortening do positive contractile
work

Modulation of muscle function may occur depending on the
locomotion medium (land, water)



