
Biology 325 - 2005
Guest Lectures in Animal Locomotion

Lectures 1  & 2:  John Gosline
• The metabolic cost of terrestrial and aquatic locomotion; 
• Cost of transport; scaling of metabolic cost.
• Mechanics of terrestrial locomotion: walking and running.

Lectures 3 & 4:  Margo Lillie
• Mechanical properties of tendon
• Tendon elasticity in wallaby hopping
• Mechanical behaviour of muscles: positive and negative work
• Role of muscles in running

Lectures 5 & 6:  Bob Shadwick
• Muscle work-loops
• Structure and mechanics of muscle in swimming fish
• Work-loop control in aquatic vs. terrestrial movement

http://www.zoology.ubc.ca/bpg/courselinks.htm

 
 

Metabolic 
Power 
(W/kg)

Speed (m/s)

0            1             2             3             4       5

Resting Metabolic Rate; ca. 1 W/kg

Walking

Running

Metabolic Power in Human Locomotion
As determined by Oxygen Consumption

0

10

20

 
 

Speed (m/s)

Walking

Running

NET Metabolic Power in Human Locomotion
As determined by Oxygen Consumption

Metabolic 
Power 
(W/kg)

0

10

20

0            1             2             3             4       5

 



Metabolic
Cost of 

Transport
(J/kg m)

Walking

Running

COST OF TRANSPORT
W/kg  ÷ m/s =  J/kg m

0

2

4

Human Locomotion
Bipedal

Speed (m/s)

0            1             2             3             4       5

 
 

Metabolic
Cost of 

Transport
(J/kg m)

Speed (m/s)

0               2                  4                   6        8

Walk

COST OF TRANSPORT
W/kg  ÷ m/s =  J/kg m

0

2

4

Trot Gallop

Cost of Transport in 140 kg horses

Quadrupedal Locomotion

 
 

-3        -2        -1        0         1          2          3

Log Body Mass (kg)

Log
Metabolic

Cost of 
Transport

(J/kg m) 0

1.0

-1.0

Terrestrial 
Locomotion
(mammals)

Cost of Transport Scales with Body Mass, M-0.33

75 kg 
Human

140 kg 
Horse

 



Speed (m/s)

0                0.5                 1.0                1.5     2.0

Standard Metabolic Rate;  0.08 W/kg

Metabolic Power in Fish Swimming
As determined by Oxygen Consumption

1 kg salmon

Metabolic 
Power 
(W/kg)

0

1.0

2.0

J. R. Brett, 
Fisheries Research Board of Canada Biological Station, Nanaimo, B.C., Canada

 
 

Metabolic Power (P) in 
Aquatic Locomotion 

increases with speed (S) 
as,

P α S3

0                0.5                1.0                1.5      2.0

Optimal Cost of Transport

Speed (m/s)

Metabolic 
Power 
(W/kg)

0

1.0

2.0

Metabolic Power in Fish Swimming
As determined by Oxygen Consumption

1 kg salmon

 
 

0                0.5                1.0                1.5      2.0

Speed (m/s)

COST OF TRANSPORT
W/kg  ÷ m/s =  J/kg m

Metabolic
Cost of 

Transport
(J/kg m)

0

1.0

1.5

0.5

Optimal Cost of Transport

Cost of Transport (CoT) 
in Aquatic Locomotion 

increases with speed (S) 
as,

CoT α S2

1 kg salmon

 



-3        -2        -1        0         1          2          3

Log Body Mass (kg)

Log
Cost of 

Transport
(J/kg m)

0

1.0

-1.0

Terrestrial 
Locomotion
(mammals)

Cost of Transport Scales with Body Mass, M-0.33

75 kg 
Human

140 kg 
Horse

Aquatic 
Locomotion

(fish)

1 kg Salmon

 
 

J/kg m  =  Nm/kg m   =   N/kg
The cost of transport can be expressed as the force (N) required to move a 1 
kg fish at a particular speed.  So for a 1kg salmon moving at 1 m/s, the 
metabolic “force” per kg will be about 0.7 W/kg.
Let’s estimate the DRAG FORCE the fish will experience in water to see if we 
can account for this metabolic “force” required to move the fish at 1 m/s.

Fdrag = ½Cd ρAV2

ρwater  = 1000 kg/m3; V = 1.0 m/s;             A ≈ 0.006 m3

Cd =  0.45  (sphere) 1.35 N
=   0.01  (streamlined body)  0.03 N
≈ 0.05  (fish) 0.15 N 

The metabolic “force” should be larger than the mechanical force because 
of the loss in the conversion of chemical energy (metabolism) into 
mechanical thrust.   A reasonable guess for the efficiency of this conversion 
is about 20%, making the metabolic “force” roughly equal to 0.75 N/m.  
Note, this value is virtually identical to that shown on the graph.
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Level Walking     V ≈ 1 m/s

Force and Energy in Level Movement at Constant Velocity

Gravitational Force     (Fg = mg) weight
Gravitational Energy   (Eg = mgh) ∆h = 0,      Eg = 0
Acceleration Force      (Fa = ma)         a = 0,         Fa = 0

Level Running   V ≈ 4 m/s
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Velocity of Centre of Mass = K.E.

Velocity and Height are NOT Constant in terrestrial Locomotion

Height of Centre of Mass = P.E.

Height of Centre of Mass = P.E.

Walk

Run

 
 

Inverted Pendulum

Velocity and Height are NOT Constant in terrestrial Locomotion
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Where is Elastic Energy Stored in the Leg?

Tendon:

Muscles:

Bone:

 



Tendon:

Muscles: Bone is so rigid that there 
is essentially no bending 

of the bones during 
normal movement.  

Very little energy is stored 
in the bones.

Where is Elastic Energy Stored in the Leg?

 
 

Elastic Energy is Stored Primarily in the Stretching of 
the Tendon-Muscle System that Controls the 

Extension of the Ankle

Tendon:

Some muscles are 
“conventional”, 

with  parallel fibres 
that shorten during 

function.

 
 

Elastic Energy is Stored Primarily in the Stretching of 
the Tendon-Muscle System that Controls the 

Extension of the Ankle

Tendons may 
appear to be part 

of a muscle

Some muscles are 
“conventional”, 

with  parallel fibres 
that shorten during 

function.

Other muscles 
have different fibre 
patterns, and their 
functions are more 

complex
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Rotation Forces on Lever at Ankle 

Reducing θ tends to stretch 
muscle and tendon

GRF balanced by 
tensile force

in muscle and tendon

Ground reaction force
rotates ankle,

reducing θ

Pivot

θGRF

Gastrocnemius
muscle

 
 
 
 
 
 
 
 
 



How much energy can be stored in tendon and muscle?
Energy = Work = Force x Length

Amount of force and stretch
depends on

mechanical properties
of muscle and tendonGround reaction force

rotates ankle,
reducing θ

Pivot

θGRF
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Energy to Break a Tendon
Energy = Work = Force x Distance
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We already know that metabolic power is independent 
of speed.

Question:
How does mechanical work change with speed?

In Vivo Study of Wallaby Hopping

Experimental Approach:
1. Get force (stress) and length (strain) data

i   muscle
ii  tendon

2. Calculate mechanical work done

 

Tendon buckle

• ‘E’ shaped transducer
• Tendon force bends sensor

TENDON BUCKLE
Measures force on tendon

Experimental Study: Wallaby Hopping on Treadmill
Measure:

1. Force on muscle and tendon using tendon transducers
2. Tendon length and area 
3. Muscle fibre length using sonomicrometer
4. Electromyography  (EMG) 

Sensor
1.

 
 
 
 
 
 
 
 
 



• σ = F/A
• ε = σ/E
• vol = length x area
• resilience = 0.93

CALCULATE TENDON WORK  
Work out =0.5 σ ε vol x 0.93

Stress

Strain

Experimental Study: Wallaby Hopping on Treadmill

E = 109 N/m2

2.

Measure:
1. Force on muscle and tendon using tendon transducers
2. Tendon length and area 
3. Muscle fibre length using sonomicrometer
4. Electromyography  (EMG) 

 

Experimental Study: Wallaby Hopping on Treadmill

Emitting electrode gives 5 MHz sound pulse

• Measure transit time, ∆t
• Speed of sound = 1540 m/s
• Length= ∆t x 1540

Receiving electrode

SONOMICROMETRY
Calculate length from transit time

3.

Measure:
1. Force on muscle and tendon using tendon transducers
2. Tendon length and area 
3. Muscle fibre length using sonomicrometer
4. Electromyography  (EMG) 
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Force
(N)
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Isometric Contraction

Develop force

Ideally, no energy is 
lost or gained. 

Little work is done
by active muscle

Relax force
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Myosin cross-bridges
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Muscle Power
Power = work / time 

Power = (Force x Distance) / time

Muscle Power
Output
(W/kg)
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Muscle Efficiency

Muscle Efficiency
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Efficiency =

Mechanical Power Output

Metabolic Power Input

 

We already know that tendons supply energy for running.

Question: 
What are the muscles doing in vivo?

In Vivo Study of Turkey Running

Experimental Approach:
1. Get force (stress) and length (strain) data
2. Calculate mechanical work done
3. Run turkey on level and incline
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EMG activated earlier on incline

Conclude: More muscle fibres must be used on incline,
increasing the metabolic cost

Muscle Use on Level and Incline

 
 
 
 



Muscle Work Loops in Stance Phase
for Running Turkey 
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Force
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Muscle generates
a force and

dissipates 6 mJ 

Muscle does 
work and

adds 318 mJ

Turkey ankle muscles act as a spring on level 
and as a motor on incline.

 

Muscle Work Loops in Stance Phase
for Hopping Wallaby #3  
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Force
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Strain (∆L/L0) Strain (∆L/L0)
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100
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Muscle Work Loops in Stance Phase
for Hopping Wallaby #2  

Muscle
Force

(N)

Strain (∆L/L0) Strain (∆L/L0)

200

0

0 0.20.1

100

0 0.20.1

Level Incline

Muscle
dissipates

19 mJ 
Muscle 

dissipates
27 mJ 

Wallaby ankle muscles act as a spring or brake on level and on incline.
Do more proximal leg muscles act as motors on incline?

Plantaris muscle
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aquatic terrestrial

Eels on land and in water

Muscle activity

On land muscle activity and amplitude 
are greater.

In water, there is a delay in the 
shortening of muscle after activation time
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on land v. lateralis is used as a force 
generator, active when lengthening, (i.e. 
negative work)

in water v. lateralis is used to generate 
positive contractile work
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Summary:

• A major difference between aquatic and terrestrial locomotion is
gravity

• Muscle performance is controlled by the phase and duration of 
activation

• Muscle performance is also influenced by cycle frequency or 
shortening velocity

•
• Muscle active primarily during lengthening absorbs energy 

(negative work)

• Muscle active primarily during shortening do positive contractile 
work

• Modulation of muscle function may occur depending on the 
locomotion medium (land, water) 


