
In running, kinetic and potential energy removed from the
body during the first half of a running step is transiently stored
as elastic strain energy and later released during the second half
by elastic recoil. The mechanism of elastic recoil was first
proposed in 1964, when Cavagna and collaborators noticed
that the forward kinetic energy of the body’s center of mass is
in phase with fluctuations in gravitational potential energy
(Cavagna et al., 1964). They hypothesized that humans and
animals most likely store elastic strain energy in muscle,
tendon, ligament and perhaps even bone to reduce fluctuations
in total mechanical energy. Motivated by these energetic data,
Blickhan (1989) and McMahon and Cheng (1990) proposed a
simple model to describe the stance period of symmetric
running gaits: a point mass attached to a massless, linear
spring. Using animal data to select the initial conditions at first
ground contact, they demonstrated that the spring-mass model
can predict important features of stance period dynamics
(Blickhan, 1989; McMahon and Cheng, 1990). 

Since its formulation the spring-mass model has served as
the basis for theoretical treatments of animal and human
running, not only for the study of running mechanics, but also
stability. Kubow and Full (1999) investigated the stability of
hexapod running in numerical simulation. At a preferred
forward velocity, a pre-defined sinusoidal pattern of each leg’s
ground reaction force resulted in stable movement patterns.

However, the legs could not be viewed as entirely spring-like
since their force production did not change in response to
disturbances applied to the system. Later Schmitt and Holmes
(2000) found a lateral spring-mass stability for hexapod
running on a conservative level where total mechanical energy
is constant. However, in this study, they investigated lateral
and not sagittal plane stability in a uniform gravitational field.
In contrast, Seyfarth et al. (2002) investigated the stride-to-
stride sagittal plane stability of a spring-mass model. Although
the model is conservative it can distribute its energy into
forward and horizontal directions by selecting different leg
angles at touch-down (Geyer et al., 2002). Surprisingly, this
partitioning turns out to be assymptotically stable and predicts
human data at moderate running speeds (5·m·s–1). However,
model stability cannot be achieved at slow running speeds
(≤3·m·s–1). Additionally, at moderate speeds (~5·m·s–1), a high
accuracy of the landing angle (±1°) is required, necessitating
precise control of leg orientation.

The purpose of this study is to investigate control strategies
that enhance the stability of the spring-mass model on a
conservative level. In the control scheme of Seyfarth et al.
(2002), the angle with which the spring-mass model strikes the
ground is held constant from stride-to-stride. In this
investigation, we relax this constraint and impose a swing-leg
retraction, a behavior that has been observed in running
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In running, the spring-like axial behavior of stance
limbs is a well-known and remarkably general feature.
Here we consider how the rotational behavior of limbs
affects running stability. It is commonly observed that
running animals retract their limbs just prior to ground
contact, moving each foot rearward towards the ground.
In this study, we employ a conservative spring-mass model
to test the effects of swing-leg retraction on running
stability. A feed-forward control scheme is applied where
the swing-leg is retracted at constant angular velocity
throughout the second half of the swing phase. The control
scheme allows the spring-mass system to automatically

adapt the angle of attack in response to disturbances in
forward speed and stance-limb stiffness. Using a return
map to investigate system stability, we propose an optimal
swing-leg retraction model for the stabilization of flight
phase apex height. The results of this study indicate that
swing-leg retraction significantly improves the stability of
spring-mass running, suggesting that swing-phase limb
dynamics may play an important role in the stabilization
of running animals. 

Key words: biomechanics, legged locomotion, return map, spring-
mass model, swing phase.
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humans and animals (Muybridge, 1955; Gray, 1968) in which
the swing-leg is moved rearward towards the ground during
late swing-phase. This controlled limb movement has been
shown to reduce foot-velocity with respect to the ground and,
therefore, landing impact (De Wit et al., 2000). Additionally,
a biomechanical model for quadrupedal locomotion indicated
that leg retraction could improve stability in quadrupedal
running (Herr, 1998; Herr and McMahon, 2000, 2001; Herr et
al., 2002). We hypothesize that swing-leg retraction improves
the stability of the spring-mass model by automatically
adjusting the angle with which the model strikes the ground
from one stride to the next. We test this hypothesis by imposing
a constant rate of retraction throughout the second half of the
swing phase. Using a return map analysis on swing-phase apex
height (Seyfarth et al., 2002), we compare model stability at
zero retraction velocity (constant angle of attack) to model
stability at several non-zero retraction velocities. 

Materials and methods
Spring-mass running with leg retraction

Running is characterized by a sequence of contact and flight
phases. For the contact phase of symmetric running gaits,
researchers have described the dynamics of the center of mass
with a spring-mass model comprising a point mass attached to
a massless, linear leg spring (Blickhan, 1989; McMahon and
Cheng, 1990). To describe the dynamics of the flight phase, a
ballistic representation of the body’s center of mass has been
used (McMahon and Cheng, 1990). In their investigation of the
stability of spring-mass running, Seyfarth et al. (2002) assumed
that the leg spring strikes the ground at a fixed angle with
respect to the ground. 

In this investigation, the effect of swing-leg retraction on the
stability of the spring-mass model is investigated. Here the
orientation of the leg is not held fixed during the swing phase,
but is now considered a function of time α(t). For simplicity,
we assume a linear relationship between leg angle (measured
with respect to the horizontal) and time, starting at the apex
tAPEX with an initial leg angle αR (retraction angle) (Fig.·1):

for t<tAPEX, α(t) =αR, (1a)

for t≥tAPEX, α(t) =αR+ωR(t − tAPEX) , (1b)

where ωR is a constant angular leg velocity (retraction speed). 

Stability analysis

To evaluate the stability of potential movement trajectories,
we use a return map analysis. For legged locomotion, a return
map relates the system state at a characteristic event or moment
within a gait cycle to the system state at the same event or
moment one period later. To keep the analysis as simple as
possible, we select the swing-phase apex height as the
characteristic event. At this point, the system state (x, y, vx,
vy)APEX is uniquely identified by one variable, the apex height
yAPEX. Here, x and y are the horizontal and vertical positions,
and vx and vy are the horizontal and vertical velocities of the

model’s point mass. The system state is uniquely defined by
the apex height due to (1) the vanishing vertical velocity
vy,APEX=0 at this point, (2) the fact that x has no influence on
future periodic behavior, and (3) the conservative nature of the
spring-mass system in which total mechanical energy is held
constant.

The return map investigates how this apex height changes
from step to step, or more precisely, from one apex height
(index ‘i’) to the next one (index ‘i+1’) in the following flight
phase (after one contact phase). For a stable movement pattern,
two conditions must be fulfilled within this framework: (1)
there must be a periodic solution (Equation·2a, called a fixed
point where y*APEX is the steady state apex height), and (2)
deviations from this solution must diminish step-by-step
(Equation·2b, or an asymptotically stable fixed point). 

yi+1 =yi =y*APEX, (2a)

For simplicity, the subscript APEX in yi+1 and yi has been
removed. 

The requirements for stable running can be checked
graphically by plotting a selected return map (e.g. for a given
retraction angle αR and a given retraction velocity ωR) within
the (yi, yi+1) plane and searching for stable fixed points
fulfilling both conditions defined by Equations·2a and 2b. The
first condition (Equation·2a, periodic solutions) requires that
there is a solution (i.e. a single point) of the return map yi+1(yi)
located at the diagonal (yi+1=yi). The second condition
(Equation·2b, asymptotic stability) demands that the slope
(dyi+1/dyi) of the return map yi+1(yi) at the periodic solution
(intersection with the diagonal) is neither steeper than 1 (higher
than 45°) nor steeper than –1 (smaller than –45°).

As a consequence of the imposed leg retraction, the return
map of the apex height yi+1(yi) is determined by two
mechanisms: the control of the angle of attack α0(yi) before
landing (leg retraction) and the dynamics of the spring-mass
model resulting in the next apex height yi+1(α0, yi). According
to the definition of leg retraction (Equation·1), the analytical
relationship between the apex height yAPEX and the landing
angle of attack α0 is:

where l0 denotes the leg length at touch-down andg is the
vertical component of the gravitational acceleration. Merely
one branch of the quadratic function in α0 has to be considered
as retraction holds only for times t≥tAPEX according to
Equation·1 (either α0>αR or α0<αR, depending on the sign of
ωR). This allows us to derive the control strategy α0(yAPEX). 

Numerical procedure

The running model is implemented in Simulink
(Mathworks) using a built-in variable time step integrator
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(ode113) with a relative tolerance of 1e–12. For a human-like
model (point massm=80·kg, leg length l0=1·m) at different
horizontal speeds vx (initial conditions at apex y0,APEX are
vx,APEX=vx and vy,APEX=0), the leg parameters (kLEG, αR, ωR)
for stable running are identified by scanning the parameter
space and measuring the number of successful steps. The
stability of potential solutions is evaluated using the return map
yi+1(yi) of the apex height yAPEX of two subsequent flight
phases (i and i+1). For a given system energy E, all possible
apex heights 0≤y0,APEX ≤E/(mg) are taken into account. For
instance, for a system energy E corresponding to an initial
horizontal velocity vx=5·m·s–1 at an apex height y0,APEX=1·m,
apex heights between 0 and 2.27·m are taken into account. To
keep the system energy constant, the horizontal velocity at
apex v0,APEX=vx is adjusted according to the selected apex
height y0,APEXusing the equation mgy0,APEX+m/2(v0,APEX)2=E. 

Results
Can leg retraction stabilize spring-mass running?

The kinematics of the spring-mass model are evaluated
using (1) a fixed angle of attack α0 and (2) the swing-leg
retraction strategy (Equation·1). The results are shown in
Fig.·2. Starting at an initial apex height of 1.25·m, both control
strategies stabilize to a final limit cycle. Spring-mass running

with a fixed angle of attack α0 is stable if (1) the leg stiffness
kLEG and the angle of attack α0 are both properly adjusted to
the chosen running speed and (2) the initial vertical position
y0,APEX is within the range of attraction for the corresponding
stable fixed point. (For more information on spring-mass
running using a fixed angle of attack, see Seyfarth et al., 2002). 

With the swing-leg retraction control, the rotational leg
velocity before landing (retraction speed ωR) leads to a step-
to-step adjustment of the angle of attack α0, which gradually
converges to a final steady state angle α0* (dotted line in
Fig.·2C). Since the leg has a fixed angular velocity during the
second half of the flight phase, the chosen initial apex height
(y0,APEX=1.25·m) leads to a steeper landing angle compared to
the steady state angle α0* . Consequently, the first contact phase
is asymmetric with respect to the vertical axis (Fig.·2A,C) and
therefore, the next apex height is lower than the previous apex
height. Due to the shorter flight phase, the second angle of
attack is clearly flatter (a smaller angle of attack). Finally, the
system stabilizes at the steady state angle α0* with a
corresponding apex height y*APEX.

With leg retraction, steady-state running is achieved within
approximately 2 steps, whereas the system without retraction
needs approximately 8 steps (Fig.·2A). This indicates that leg
retraction can improve the attraction of stable limit cycles in
running.

Take-off

Touch-
down

Apex

αR

ωR

Flight phase ContactContact

y

x

yAPEX

vx

α0

Fig.·1. Spring-mass model with retraction. Swing-leg retraction in running, as indicated by the photographs of Muybridge (1955; reproduced
with permission from Dover Publications), is modeled assuming a constant rotational velocity of the leg (retraction speed ωR), starting at the
apex of the flight phase at retraction angle αR. Depending on the duration of the flight phase, the landing angle of the leg (angle of attack α0) is
a result of the model dynamics and has no predefined constant value in contrast to the previous model of Seyfarth et al. (2002). The axial leg
operation during the stance phase is approximated by a linear spring of constant stiffness kLEG.
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Stability analysis for running

The influence of leg retraction on the return map of
the apex height is shown in Fig.·3. With increased
retraction speed (ωR=25 and 50·deg·s–1) the solutions of
yi+1(yi) for different retraction angles αR become more
horizontally aligned. As a consequence, disturbances in
apex height are compensated for more rapidly (paths

indicated by the arrows in Fig.·3).
Furthermore, the attraction range in
yAPEX for the stable fixed points is
largely increased (maximum increase in
yAPEX: ~35·cm for ωR=0, ~90·cm for
ωR=25·deg·s–1, and ~120·cm for
ωR=50·deg·s–1. See dotted lines in Fig.·3).

In the case of leg retraction, the control of
the angle of attack α0 is shifted into a
control of the retraction angle αR. For zero

retraction speed (ωR=0) the retraction angle αR becomes
identical to the angle of attack α0 (αR=α0, Fig.·3A), i.e. the
leg angle is adjusted at apex height and does not change until
ground contact. With increasing retraction speed ωR, the
range of retraction angles resulting in stable running is
enlarged (2.6° for ωR=0; 7.2° for ωR=25·deg·s–1; 14.6° for
ωR=50·deg·s–1).
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Fig.·2. Center of mass trajectories (A) and leg
kinematics (B,C) for spring-mass running with
and without retraction (C, ωR=50·deg·s–1;
B, ωR=0·deg·s–1). The bars in A indicate the
change in centre of mass height between touch-
down and take-off. B and C are expanded views
of plot A from 0 to 6·m (boxed). For each
simulated run, the same initial apex height was
used (y0=1.25·m), and for the simulation with
retraction, a retraction angle of αR=60° was
assumed (C). Here the model with retraction
reached a steady state condition after two steps in
contrast to approximately 8 steps for the model
without retraction (A,B). The red dotted lines in
B and C denote the steady state landing angle
α0*.
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Fig.·3. Return maps yi+1(yi) of the apex height yAPEX of two consecutive flight phases (index i and i+1) for three different retraction speeds ωR

(A, ωR=0·deg·s–1; B, ωR=25·deg·s–1; C, ωR=50·deg·s–1).The system energy corresponds to a running speed of 5·m·s–1 at an apex height
yAPEX=1·m. (A–C) Three characteristic return maps represent the minimum, mean and maximum retraction angle αR (see key in each panel) for
stable fixed points (see text, Equation·2). With increasing retraction speed ωR, the range of retraction angles αR with stable fixed points
increases, and attraction of higher apex heights is observed (max. y0≈1.3, 1.9, 2.2 for ωR=0, 25, 50·deg·s–1, respectively) as shown by
representative tracings (running sequences are indicated by stepped black lines with starting arrows). 
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Running at low speeds

Spring-mass running with a fixed angle of attack is
characterized by a minimum speed required for stability
(Seyfarth, 2002). In Fig.·4, a running speed (vX=3·m·s–1) close
to this minimum speed is selected. At the given leg stiffness
(kLEG=20·kN·m–1) no stable fixed point exists without
retraction (Fig.·4A). Employing the leg retraction control,
stable fixed points emerge in the return map. Similar to the
finding in Fig.·3, an increased retraction speed ωR leads to (1)
an enlarged range of attraction in yAPEX, (2) a faster
convergence to the stable fixed point (fewer steps), and (3) an
increased range of successful retraction angles αR for stable
running.

Robustness with respect to leg stiffness kLEG

Spring-mass running requires a proper adjustment of leg
stiffness to the chosen angle of attack (Blickhan, 1989;
McMahon and Cheng, 1990; Herr and McMahon, 2000, 2001;
Seyfarth, 2002). However, even at zero retraction speed
(ωR=0), a range of leg stiffness can fulfill periodic running at
a given angle of attack α0 (Seyfarth, 2002). To test the
robustness of spring-mass running with respect to variations
in leg stiffness, we estimate the maximum and minimum
stiffness change that could be tolerated by the system. A
stiffness change is applied during steady state running,
starting from an initial leg stiffness of 20·kN·m–1 (Fig.·5A).
For these numerical experiments, the mean angles of attack
(αR=67.6°, 64.4°, 60.0° in Fig.·5A,C,E) with respect to the
range of all αR with stable fixed points in Fig.·3A–C are used.
After the first three steps in steady state running, leg stiffness
is permanently shifted. Without retraction, variations in leg
stiffness within 18.2 and 22.4·kN·m–1 are tolerated (Fig.·5A)
even without any stride-to-stride adaptations in the angle of
attack (Fig.·5B).

By introducing leg retraction (Fig.·5C, ωR=25·deg·s–1;

Fig.·5E, ωR=50·deg·s–1), the range of tolerated stiffness
is largely increased (16–28.8·kN·m–1 for ωR=25·deg·s–1;
13.9–62·kN·m–1 for ωR=50·deg·s–1). These results show that
the rotational velocity of the leg ωR inherently adapting the
angle of attack α0 allows for large variations in leg stiffness
(Fig.·5D,F).

Discussion
Late swing-phase retraction has been observed in running

animals of different leg number and body size (Muybridge,
1955; Gray, 1968). Although swing-leg retraction seems to
be a general feature in biological running, few researchers
(De Wit et al., 2000; Herr and McMahon, 2000, 2001; Herr
et al., 2002) have studied the behavior and, consequently, its
purpose is not fully understood. In this investigation, we
show that leg retraction is a simple strategy to improve the
stability of spring-mass running. By imposing a uniform
retraction velocity, we demonstrate that the stability of the
spring-mass model is increased with respect to variations in
forward speed, leg angle (retraction angle αR) and leg
stiffness kLEG. 

Swing-leg retraction approximates the natural angle of attack

In terms of the return map of the apex height, we can ask
for an ‘optimal’ control strategy by imposing the constraint
yi+1(yi)=yCONTROL=constant. Within one step this return map
projects all possible initial apex heights yi to the desired apex
height yi+1=yCONTROL.

As a consequence of the dynamics of the spring-mass
system, the apex height yi+1 is merely determined by the
preceding apex height yi and the selected angle of attack α0.
This dependency yi+1(yi, α0) can be understood as a ‘fingerprint
of spring-like leg operation’ and is represented as a surface in
Fig.·6A. When applying any control strategy α0(yi), this
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fixed points with respect to a given initial (e.g. disturbed) apex height. Model parameters: m=80·kg, l0=1·m, kLEG=20·kN·m–1. 
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generalized surface yi+1(yi, α0) can be used to derive the
corresponding return maps. 

For example, in the case of a ‘fixed angle of attack’ (no
retraction: α0(yi)=αR=constant) the surface has to be scanned
at lines of constant angles α0 (Fig.·6A, e.g. red line: α0=68°).
These lines are projected to the left (yi+1,yi) plane in Fig.·6A
and match the return map in Fig.·3A. 

Let us now consider the ‘optimal control strategy for stable
running’ α0(yi) fulfilling yi+1(yi)=yCONTROL=constant. Using
the identified fingerprint, this simply requires us to search for
isolines of constant yi+1 on the generalized surface yi+1(yi, α0),
as indicated by the green lines in Fig.·6A (yi+1=1, 1.5 and 2·m).
The projection of these isolines onto the (α0, yi) plane represents
the desired ‘natural’ control strategy α0(yi) for spring-mass
running as depicted for yCONTROL=1, 1.5, 2·m in Fig.·6B.

The constant-velocity leg retraction model put forward in
this paper represents a particular control strategy α0(yi) relating
the angle of attack α0 to the apex height yi of the preceding
flight phase (Equation·3), as shown in Fig.·6B for different
retraction speeds (ω·=0, 25, 50, 75·deg·s–1) and one retraction
angle (αR=60°). It turns out that this particular leg retraction
model can approximate the natural control strategy within a
considerable range of apex heights if the proper retraction
parameters (αR, ωR) are selected. The value of the retraction
angle αR shifts the line of the retraction control α0(yi) along

the α0 axis, whereas the retraction speed ωR determines the
slope of the control line. Thus, the retraction parameters have
different qualities with respect to the control of running; if the
retraction speed ωR guarantees the stability (setting the range
and the strength of attraction to a fixed point), then the
retraction angle αR selects the apex height of the corresponding
fixed point yCONTROL. Due to this adaptability, a constant
velocity leg retraction model, as evaluated in this paper, can
significantly enhance the stability of running compared to the
fixed angle control model described by Seyfarth et al. (2002). 

Influence of speed on the stability of spring-mass running

The return maps in Figs·3 and 4 indicate that the generalized
surface yi+1(yi, α0) is a function of the forward running speed.
The selected retraction speeds in Figs·3 and 4 (ωR=0, 25,
50·deg·s–1) show that the slope of the return map yi+1(yi)
generally increases with (1) decreasing running speed and (2)
decreasing retraction speed ωR. As a consequence, running at
3·m·s–1 is not stable using a fixed angle of attack (ωR=0 in
Fig.·4A), but is stable using non-zero retraction speeds (ωR=25
and 50·deg·s–1 in Fig.·4B and C, respectively). Hence, even
at slow forward running speeds (≤3·m·s–1), there exists a
natural control strategy represented by the isolines of the
corresponding generalized surface with yi+1(yi, α0)=constant.
In comparison with the fixed angle of attack control, leg
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Fig.·5. The influence of retraction speed ωR on the robustness of running is shown with respect to a permanent change in leg stiffness kLEG. For
each run (vx,0=5·m·s–1, y0=1·m), the maximum and minimum leg stiffness (kMIN, kMAX ) required to keep the system in a periodic running
movement are depicted (A,C,E). The retraction angle αR (denoted in A,C,E) is chosen according to the mean retraction angle for stable fixed
points in Fig.·3 at kLEG=20·kN·m–1. (B,D,F) The adaptation of the leg angle to the changed leg stiffness.
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retraction at constant velocity approximates this natural control
(Fig.·6B). Thus, a constant velocity retraction is a successful
strategy to stabilize running below the critical forward running
speed where stable running is not achievable using a fixed
angle control.

The fact that the spring-mass model, with retraction, is stable
at slow forward running speeds seems critical. Clearly, for a
running model to be viewed as a plausible biological
representation, the model should be stable across the full range
of biological running speeds. Without swing-leg retraction,
the spring-mass model could not be stabilized at slow
biological running speeds (~3·m·s–1 for m=80·kg, l0=1·m,
kLEG=20·kN·m–1; Fig.·4A), but with retraction, the spring-mass
model could readily be stabilized (Fig.·4B,C).

Swing-leg retraction in human running: preliminary
experimental results

A treadmill (Woodway, Germany) was equipped with an
obstacle-machine designed to disturb swing-phase dynamics
during human running. The obstacle-machine consisted of a
cylindrical-shaped bar (2.5·cm diameter, 40·cm length) passing
from the left to the right side of the treadmill walkway (the
bar’s long axis is generally perpendicular to the direction of
the moving treadmill surface). Every 9–16·s, the bar moved
towards the human runner at a speed equivalent to the treadmill
surface, forcing the runner to change his swing-phase
kinematics to avoid the obstacle. The movement of the obstacle
bar was triggered by the ground reaction force F. For each
experiment, the bar was positioned 12·cm above the moving
treadmill surface. 

Using this apparatus, we conducted experiments on five
male subjects (body mass 79.6±5.9·kg, age 30.6±3.2·yrs)
performing treadmill running at 3·m·s–1. We measured leg
kinematics (leg angle, leg length) during both the stance and
swing phases. Leg angle α and length lLEG at the onset of
swing-leg retraction and at touch-down were used to
characterise the kinematic leg control prior to landing. The
retraction velocity ωR was estimated as the mean angular
velocity within the last 20·ms before touch-down. Furthermore,
the leg stiffness kLEG was approximated using the maximum
vertical ground reaction force FMAX and the maximum leg
compression ∆lMAX =max(l0–l) during stance phase with
kLEG=FMAX /∆lMAX .

For undisturbed running, we found surprisingly uniform leg
kinematics during both the stance and swing phases (shown for
one subject in Fig.·7). In contrast, when passing over the
obstacle, swing-leg kinematics were altered significantly, but
stance period dynamics immediately following the obstacle
were largely unaffected. Swing-leg retraction was observed in
undisturbed running with an angular range equal to
αSHIFT=4.5±0.9° (Table·1). During this period of swing-leg
retraction, only a minor change in leg length was observed
(lSHIFT=1±0.5·cm), supporting one of the assumptions of our
control model. 

We observed a significant re-adjustment of leg retraction in
response to the disturbance. Both the retraction angular range
αSHIFT (∆αSHIFT=4.7±3.0°, P<0.05, paired t-test) and the
retraction velocity ωR (∆ωR=22±13·deg·s–1, P<0.05) increased
in response to the disturbance. Here, the change in the angular
range ∆αSHIFT was primarily the result of a decreased retraction

Fig.·6. (A) A three-dimensional (3D) representation yi+1(yi, α0) of the return map yi+1(yi) characterizes spring-mass running (system energy
corresponds to vX=5·m·s–1 at yAPEX=1·m; m=80·kg, l0=1·m, k=20·kN·m–1) for different angles of attack α0. For fixed angles of attack (slices in
3D), the corresponding return maps are shown on the left (yi, yi+1) plane. The red line depicts the return map for α0=68°. Different return maps
are possible if the angle of attack α0 becomes dependent on the apex height yi. An ‘optimal’ control model with respect to stability would be a
direct projection of any initial apex height yi to a desired apex height yCONTROL in the next flight phase, or yi+1(yi)=yCONTROL=constant, as
shown for apex heights of 1, 1.5 and 2·m (left plane). This corresponds to isolines on the 3D-surface yi+1(yi, α0) indicating a dependency
between the angle of attack α0 and the initial apex height yI, as shown for yCONTROL=1, 1.5 and 2·m in (B). With careful selection of the
retraction velocity ωR and the retraction angle αR, the constant velocity leg retraction model can approximate the optimal control strategy.
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angle αR (∆αR=–3.0±2.5°, P=0.057) rather than an increased
angle of attack α0 (∆α0=1.7±2.1°, P=0.15). In contrast,
no significant change was observed in leg stiffness
(∆kLEG=–2.3±4.4·kN·m–1, P=0.31) or in leg length adjustment
(∆lSHIFT=0±1.0·cm, P=1) during the stance period immediately
following the disturbance. 

These results indicate that leg retraction is employed in
human running and is even enhanced when an obstacle
disturbance is applied. The data presented here support the
hypothesis of the model, namely, that swing-leg retraction is a
strategy used in running to select an angle of attack that
sustains a desired movement pattern.

Alternative biological strategies to stabilize running

The analysis reveals that the stability of spring-mass running
is highly sensitive to the angular velocity of the leg before
landing. Although swing-leg retraction seems an important
stabilizing mechanism, we cannot ignore the importance of
alternative strategies that might also be crucial for stable
running. For instance, researchers have shown that visual
feedback plays an important role in obstacle avoidance and,
therefore, in stabilizing the movement trajectory. Warren et al.
(1986) investigated regulatory mechanisms to secure proper
footing using visual perception in human running. In their
investigation, subjects ran on a treadmill across irregularly

A. Seyfarth, H. Geyer and H. Herr

Table·1. Obstacle running

kLEG α0 αR αSHIFT ωR l0 lR lSHIFT

(kN·m–1) (degrees) (degrees) (degrees) (deg·s–1) (m) (m) (m)

Undisturbed running 25.2±6.8 68.8±2.1 64.3±2.0 4.5±0.9 137±9 0.932±0.020 0.942±0.018 –0.010±0.005
Disturbed running 22.9±3.6 70.4±2.7 61.3±1.5 9.1±3.6 159±21 0.949±0.018 0.959±0.017 –0.010±0.011
Difference (disturbed – undisturbed) –2.3±4.4 1.7±2.1 –3.0±2.5 4.7±3.0* 22±13* 0.017±0.021 0.017±0.023 0±0.010

Values are means ±S.D. (N=5 subjects).
kLEG, leg stiffness; α0, angle of attack; αR, onset angle of retraction; αSHIFT=α0–αR, angle swept during retraction; ωR, retraction velocity

(mean value of the last 20·ms before touch-down); l0, leg length at touch-down; lR, leg length at onset of retraction; lSHIFT=l0–lR, the shift in leg
length during retraction (see Fig.·7).

In the undisturbed condition, at least 39 steps are evaluated for each subject. 
Between 3 and 4 disturbed steps are used during obstacle avoidance.
The leg stiffness is measured in the stance phase immediately following the disturbance.
Differences between undisturbed and disturbed data are evaluated for significance using a paired t-test (*P<0.05).

Fig.·7. Leg kinematics (leg length versusleg angle) during treadmill running at 3·m·s–1. For the undisturbed condition, the mean ±S.D. of 35
running steps for one male subject (78·kg) are shown (A). The leg length lLEG was measured as the distance between hip and toe marker. The
leg angle α is defined as the projection angle with respect to the ground (Fig.·1). Swing-leg retraction is present between the onset angle αR

(length lR) and the angle of attack α0 (length l0) as shown magnified in (B). For the disturbed swing phase, the leg operation of the same
experimental subject is plotted. Although only a single subject is depicted here, similar results were observed in all experimental subjects (see
Table·1). 
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spaced foot-targets in order to effectively modulate step length
and the vertical leg impulse during stance. Although their
results suggest that vision is important for running stability,
they do not specifically address the issue of how mechanical
or neuro-muscular mechanisms may contribute when running
over ground surfaces without footing constraints. 

Intrinsic or ‘preflex’ leg stabilizing mechanisms may also be
important for running stabilization. It is well established that
the intrinsic properties of muscle leads to immediate responses
to length and particularly velocity perturbations (Humphrey
and Reed, 1983; Brown et al., 1995). In an analytical study,
Wagner and Blickhan (1999) showed that a self-stabilizing
oscillatory leg operation emerges if well-established muscle
properties are adopted.

Furthermore, by modeling the dynamics of the muscle-reflex
system, stable, spring-like leg operations can be achieved in
numerical simulations of hopping tasks if positive feedback of the
muscle force sensory signals (simulated Golgi organs) are
employed (Geyer et al., in press). These results suggest that during
cyclic locomotory tasks such as walking or running, the body
could counteract disturbances even during a single stance period. 

Future work

Here we argue that swing-leg retraction is one of many
stabilizing strategies used in biological running. Our research
suggests that both the control of stance leg dynamics and
swing-leg movement patterns may be critically important for
overall running stability in humans and animals. 

Leg retraction is a feedforward control scheme, and
therefore, can neither avoid obstacles nor place the foot at
desired foot-targets. Rather, the scheme provides a mechanical
‘background stability’ that may relax the control effort for
locomotory tasks. It remains for future research to understand
to what extent environmental sensory information might allow
for varied kinematic trajectories and an increase in the
stabilizing effects of swing-leg retraction. Future investigations
will also be necessary to fully understand the impact of late
swing-leg retraction on running stability. To gain insight into
the control scheme employed by running animals, we wish to
compare the natural retraction control formulated in this paper
to the actual limb movements of running animals. Furthermore,
since the spring-mass model of this paper is two-dimensional,
we wish to generalize retraction to three dimensions to address
issues of body yaw and roll stability. And finally, we hope to
test optimized retraction control schemes on legged robots to
enhance their robustness to internal (leg stiffness variations) and
external disturbances (ground surface irregularities). 

Conclusion

In this paper we show that swing-leg retraction can improve
the stability of spring-mass running. With retraction, the
spring-mass model is stable across the full range of biological
running speeds and can overcome larger disturbances in the
angle of attack and leg stiffness. In the stabilization of running
humans and animals, we believe both stance-leg dynamics and
swing-leg rotational movements are important control features.

List of symbols
E system energy
F vertical ground reaction force
g vertical component of the gravitational acceleration
i index
kLEG leg stiffness
l leg length
m mass
t time
v velocity
x horizontal position
y vertical position
αR retraction angle
ωR retraction speed
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