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Summary

In running, the spring-like axial behavior of stance adapt the angle of attack in response to disturbances in
limbs is a well-known and remarkably general feature. forward speed and stance-limb stiffness. Using a return
Here we consider how the rotational behavior of limbs map to investigate system stability, we propose an optimal
affects running stability. It is commonly observed that swing-leg retraction model for the stabilization of flight
running animals retract their limbs just prior to ground phase apex height. The results of this study indicate that
contact, moving each foot rearward towards the ground. swing-leg retraction significantly improves the stability of
In this study, we employ a conservative spring-mass model spring-mass running, suggesting that swing-phase limb
to test the effects of swing-leg retraction on running dynamics may play an important role in the stabilization
stability. A feed-forward control scheme is applied where of running animals.
the swing-leg is retracted at constant angular velocity
throughout the second half of the swing phase. The control Key words: biomechanics, legged locomotion, return map, spring-
scheme allows the spring-mass system to automatically mass model, swing phase.

Introduction

In running, kinetic and potential energy removed from theHowever, the legs could not be viewed as entirely spring-like
body during the first half of a running step is transiently storedince their force production did not change in response to
as elastic strain energy and later released during the second Hdiffturbances applied to the system. Later Schmitt and Holmes
by elastic recoil. The mechanism of elastic recoil was firs2000) found a lateral spring-mass stability for hexapod
proposed in 1964, when Cavagna and collaborators noticednning on a conservative level where total mechanical energy
that the forward kinetic energy of the body’s center of mass is constant. However, in this study, they investigated lateral
in phase with fluctuations in gravitational potential energyand not sagittal plane stability in a uniform gravitational field.
(Cavagna et al., 1964). They hypothesized that humans aid contrast, Seyfarth et al. (2002) investigated the stride-to-
animals most likely store elastic strain energy in musclestride sagittal plane stability of a spring-mass model. Although
tendon, ligament and perhaps even bone to reduce fluctuatioiie model is conservative it can distribute its energy into
in total mechanical energy. Motivated by these energetic datlgrward and horizontal directions by selecting different leg
Blickhan (1989) and McMahon and Cheng (1990) proposed angles at touch-down (Geyer et al., 2002). Surprisingly, this
simple model to describe the stance period of symmetripartitioning turns out to be assymptotically stable and predicts
running gaits: a point mass attached to a massless, lindamman data at moderate running speeds ¢51). However,
spring. Using animal data to select the initial conditions at firstnodel stability cannot be achieved at slow running speeds
ground contact, they demonstrated that the spring-mass modsB m s-1). Additionally, at moderate speeds {®s1), a high
can predict important features of stance period dynamicaccuracy of the landing angle (£1°) is required, necessitating
(Blickhan, 1989; McMahon and Cheng, 1990). precise control of leg orientation.

Since its formulation the spring-mass model has served asThe purpose of this study is to investigate control strategies
the basis for theoretical treatments of animal and humathat enhance the stability of the spring-mass model on a
running, not only for the study of running mechanics, but alsconservative level. In the control scheme of Seyfarth et al.
stability. Kubow and Full (1999) investigated the stability of (2002), the angle with which the spring-mass model strikes the
hexapod running in numerical simulation. At a preferredground is held constant from stride-to-stride. In this
forward velocity, a pre-defined sinusoidal pattern of each leg’mvestigation, we relax this constraint and impose a swing-leg
ground reaction force resulted in stable movement patterngetraction, a behavior that has been observed in running
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humans and animals (Muybridge, 1955; Gray, 1968) in whicilmodel's point mass. The system state is uniquely defined by
the swing-leg is moved rearward towards the ground durinthe apex height due to (1) the vanishing vertical velocity
late swing-phase. This controlled limb movement has beew, apex=0 at this point, (2) the fact thathas no influence on
shown to reduce foot-velocity with respect to the ground anduture periodic behavior, and (3) the conservative nature of the
therefore, landing impact (De Wit et al., 2000). Additionally, spring-mass system in which total mechanical energy is held
a biomechanical model for quadrupedal locomotion indicatedonstant.

that leg retraction could improve stability in quadrupedal The return map investigates how this apex height changes
running (Herr, 1998; Herr and McMahon, 2000, 2001; Herr efrom step to step, or more precisely, from one apex height
al., 2002). We hypothesize that swing-leg retraction improve@ndex ') to the next one (index+1’) in the following flight

the stability of the spring-mass model by automaticallyphase (after one contact phase). For a stable movement pattern,
adjusting the angle with which the model strikes the grountivo conditions must be fulfilled within this framework: (1)
from one stride to the next. We test this hypothesis by imposinfpere must be a periodic solution (Equatkar called a fixed

a constant rate of retraction throughout the second half of thmint whereyipex is the steady state apex height), and (2)
swing phase. Using a return map analysis on swing-phase apéaviations from this solution must diminish step-by-step
height (Seyfarth et al., 2002), we compare model stability aiEquation2b, or an asymptotically stable fixed point).

zero retraction velocity (constant angle of attack) to model i

stability at several non-zero retraction velocities. Yir1 =Yi =YApEX: (22)

where dyi+1

<1. (2b)

y;P EX

Materials and methods :

Spring-mass running with leg retraction For simplicity, the subscripapex in yiv1 andyi has been

Running is characterized by a sequence of contact and fligremoved.
phases. For the contact phase of symmetric running gaits, The requirements for stable running can be checked
researchers have described the dynamics of the center of masaphically by plotting a selected return map (e.g. for a given
with a spring-mass model comprising a point mass attached tetraction angl@r and a given retraction velocityr) within
a massless, linear leg spring (Blickhan, 1989; McMahon anthe §i, vi+1) plane and searching for stable fixed points
Cheng, 1990). To describe the dynamics of the flight phase,falfilling both conditions defined by EquaticBa and 2b. The
ballistic representation of the body’s center of mass has bedinst condition (Equatio2a, periodic solutions) requires that
used (McMahon and Cheng, 1990). In their investigation of théhere is a solution (i.e. a single point) of the return gagyi)
stability of spring-mass running, Seyfarth et al. (2002) assumddcated at the diagonalyi{i=yi). The second condition
that the leg spring strikes the ground at a fixed angle witfEquation2b, asymptotic stability) demands that the slope
respect to the ground. (dyi+1/dyi) of the return mapyi+1(yi) at the periodic solution

In this investigation, the effect of swing-leg retraction on thgintersection with the diagonal) is neither steeper than 1 (higher
stability of the spring-mass model is investigated. Here théhan 45°) nor steeper than —1 (smaller than —45°).
orientation of the leg is not held fixed during the swing phase, As a consequence of the imposed leg retraction, the return
but is now considered a function of tira€t). For simplicity, map of the apex heighti+1(yi) is determined by two
we assume a linear relationship between leg angle (measunechanisms: the control of the angle of attaeky) before
with respect to the horizontal) and time, starting at the apebanding (leg retraction) and the dynamics of the spring-mass
tapex with an initial leg angler (retraction angle) (Fidl): model resulting in the next apex height (oo, yi). According
to the definition of leg retraction (Equatiéh the analytical

fort<tapex, () =ar, (12) relationship between the apex heigabex and the landing
for t=tapex, a(t)=ar+wr(t—tarEX), (1b)  angle of attackig is:
wherewr is a constant angular leg velocity (retraction speed i g Bap - or 2
g g y ( peed) YapEx(0t0) =losindio + - BTE _ 3)

Stability analysis .

To evaluate the stability of potential movement trajectoriesVherelo denotes the leg length at touch-down anis the
we use a return map analysis. For legged locomotion, a retu¥§rtical component of the gravitational acceleration. Merely
map relates the system state at a characteristic event or mom@&Rg Pranch of the quadratic functioroiphas to be considered
within a gait cycle to the system state at the same event ¢ 'etraction holds only for timegtapex according to
moment one period later. To keep the analysis as simple fguationl (eitherao>ar or do<ar, depending on the sign of
possible, we select the swing-phase apex height as tif%®)- This allows us to derive the control strat@gyyapex).
characteristic event. At this point, the system statey, (v,

Vy)apEX is uniquely identified by one variable, the apex height Numerical procedure
yapex. Here,x andy are the horizontal and vertical positions, The running model is implemented in Simulink
andvx andwvy are the horizontal and vertical velocities of the (Mathworks) using a built-in variable time step integrator



A control model for stable runnin@549

Contact

Take-off

Fig. 1. Spring-mass model with retraction. Swing-leg retraction in running, as indicated by the photographs of Muybridge (@866edepr
with permission from Dover Publications), is modeled assuming a constant rotational velocity of the leg (retractiar)sgémting at the
apex of the flight phase at retraction arage Depending on the duration of the flight phase, the landing angle of the leg (angle afigittack
a result of the model dynamics and has no predefined constant value in contrast to the previous model of Seyfarth efTak @08Rkg
operation during the stance phase is approximated by a linear spring of constant ktiétness

(odel113) with a relative tolerance of 1e—12. For a human-likeiith a fixed angle of attacko is stable if (1) the leg stiffness
model (point massn=80Kkg, leg lengthloc=1m) at different kiLec and the angle of attaako are both properly adjusted to
horizontal speedsy (initial conditions at apeXo.apex are  the chosen running speed and (2) the initial vertical position
vk, APEX=Vx andvy,apex=0), the leg parameterk £G, Or, WR)  Yo,aPEx iS within the range of attraction for the corresponding
for stable running are identified by scanning the parametetable fixed point. (For more information on spring-mass
space and measuring the number of successful steps. Tiumning using a fixed angle of attack, see Seyfarth et al., 2002).
stability of potential solutions is evaluated using the return map With the swing-leg retraction control, the rotational leg
yi+1(yi) of the apex heighyapex of two subsequent flight velocity before landing (retraction spees) leads to a step-
phasesi(andi+1). For a given system energy all possible to-step adjustment of the angle of attagk which gradually
apex heights €yo apex <E/(Mmg) are taken into account. For converges to a final steady state angje (dotted line in
instance, for a system ener@ycorresponding to an initial Fig.2C). Since the leg has a fixed angular velocity during the
horizontal velocityyx=5m s-1 at an apex heighto apex=1 m,  second half of the flight phase, the chosen initial apex height
apex heights between 0 and 2r27are taken into account. To (yo,arex=1.25m) leads to a steeper landing angle compared to
keep the system energy constant, the horizontal velocity #te steady state angig. Consequently, the first contact phase
apex Vo Apex=Vx is adjusted according to the selected apexs asymmetric with respect to the vertical axis (R#y,C) and
heightyo, apex Using the equatiomgyy apex+m/2(vo apeX)?=E.  therefore, the next apex height is lower than the previous apex
height. Due to the shorter flight phase, the second angle of
attack is clearly flatter (a smaller angle of attack). Finally, the
Results system stabilizes at the steady state angle with a
Can leg retraction stabilize spring-mass running? corresponding apex heigtipex.

The kinematics of the spring-mass model are evaluated With leg retraction, steady-state running is achieved within
using (1) a fixed angle of attaadk and (2) the swing-leg approximately 2 steps, whereas the system without retraction
retraction strategy (Equatid). The results are shown in needs approximately 8 steps (R2g\). This indicates that leg
Fig. 2. Starting at an initial apex height of 1/25both control  retraction can improve the attraction of stable limit cycles in
strategies stabilize to a final limit cycle. Spring-mass runningunning.
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, ; - Fig.2. Center of mass trajectories (A) and leg

192 A | —wg=0deg’s! kinematics (B,C) for spring-mass running with
i —wr=50degs

and without retraction (C, wr=50degs™;

B, wr=0degs™). The bars in A indicate the

1 change in centre of mass height between touch-
down and take-off. B and C are expanded views
of plot A from 0 to 6ém (boxed). For each
simulated run, the same initial apex height was
used Yo=1.25m), and for the simulation with
retraction, a retraction angle adr=60° was
assumed (C). Here the model with retraction
reached a steady state condition after two steps in
contrast to approximately 8 steps for the model
without retraction (A,B). The red dotted lines in
B and C denote the steady state landing angle
oo*.

y (m)

0.8

y (m)

indicated by the arrows in Fig).
Furthermore, the attraction range in
yapex for the stable fixed points is
largely increased (maximum increase in
yapex: ~35cm for wr=0, ~9Ccm for
wr=25degs, and ~12@&m  for
wr=50degs1. See dotted lines in Fig).

In the case of leg retraction, the control of
the angle of attackog is shifted into a
control of the retraction angler. For zero

Stability analysis for running retraction speedufz=0) the retraction angleir becomes

The influence of leg retraction on the return map ofidentical to the angle of attaao (ar=00, Fig.3A), i.e. the
the apex height is shown in Fig. With increased leg angle is adjusted at apex height and does not change until
retraction speeduwr=25 and 5@legs™) the solutions of ground contact. With increasing retraction speag the
yi+1(yi) for different retraction anglesir become more range of retraction angles resulting in stable running is
horizontally aligned. As a consequence, disturbances ianlarged (2.6° foiwr=0; 7.2° for wr=25degs; 14.6° for
apex height are compensated for more rapidly (pather=50degs).
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Fig. 3. Return mapgi+1(yi) of the apex heightapex of two consecutive flight phases (indeandi+1) for three different retraction speeads
(A, wr=0degs™; B, wr=25degs™; C, wr=50degs1).The system energy corresponds to a running speedmé5Sat an apex height
yapex=1m. (A—C) Three characteristic return maps represent the minimum, mean and maximum retractmm @eglé&ey in each panel) for
stable fixed points (see text, Equat®)n With increasing retraction speedk, the range of retraction angles with stable fixed points
increases, and attraction of higher apex heights is observed yordx3, 1.9, 2.2 forwr=0, 25, 50degs, respectively) as shown by
representative tracings (running sequences are indicated by stepped black lines with starting arrows).
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Fig. 4. Return mapsi+1(y;) of the apex heighyapex are shown for different retraction speads (A, wr=0degs?; B, wr=25degs™; C,
w=50degs™) but for a lower system energy corresponding to a slower running spead f &t an apex heightapex=1 m. Stable fixed

points require non-zero retraction velocitias>0 (B,C). As in Fig3, an increased retraction speed leads to an enlarged attraction of the stable
fixed points with respect to a given initial (e.g. disturbed) apex height. Model paramet@®kg, lo=1 m, kiec=20kN m1.

Running at low speeds Fig.5E, wr=50degsl), the range of tolerated stiffness
Spring-mass running with a fixed angle of attack isis largely increased (16-28Bl m1 for wr=25degs™;
characterized by a minimum speed required for stabilityi3.9-62kN m~2 for wr=50degs™1). These results show that
(Seyfarth, 2002). In Figt, a running speed=3ms1) close the rotational velocity of the legr inherently adapting the
to this minimum speed is selected. At the given leg stiffnesangle of attaclap allows for large variations in leg stiffness
(kec=20kN m™Y) no stable fixed point exists without (Fig.5D,F).
retraction (Fig4A). Employing the leg retraction control,
stable fixed points emerge in the return map. Similar to the
finding in Fig.3, an increased retraction speaslleads to (1) Discussion
an enlarged range of attraction npex, (2) a faster Late swing-phase retraction has been observed in running
convergence to the stable fixed point (fewer steps), and (3) amimals of different leg humber and body size (Muybridge,
increased range of successful retraction angfe$or stable  1955; Gray, 1968). Although swing-leg retraction seems to
running. be a general feature in biological running, few researchers
(De Wit et al., 2000; Herr and McMahon, 2000, 2001; Herr
Robustness with respect to leg stiffness k et al., 2002) have studied the behavior and, consequently, its
Spring-mass running requires a proper adjustment of legurpose is not fully understood. In this investigation, we
stiffness to the chosen angle of attack (Blickhan, 1989%how that leg retraction is a simple strategy to improve the
McMahon and Cheng, 1990; Herr and McMahon, 2000, 2001stability of spring-mass running. By imposing a uniform
Seyfarth, 2002). However, even at zero retraction speeetraction velocity, we demonstrate that the stability of the
(wr=0), a range of leg stiffness can fulfill periodic running atspring-mass model is increased with respect to variations in
a given angle of attackio (Seyfarth, 2002). To test the forward speed, leg angle (retraction angle) and leg
robustness of spring-mass running with respect to variatiorsiffnesskiec.
in leg stiffness, we estimate the maximum and minimum
stiffness change that could be tolerated by the system. &wing-leg retraction approximates the natural angle of attack
stiffness change is applied during steady state running, In terms of the return map of the apex height, we can ask
starting from an initial leg stiffness of &0 m-1 (Fig. 5A).  for an ‘optimal’ control strategy by imposing the constraint
For these numerical experiments, the mean angles of attagki(yi)=yconTrot=constant. Within one step this return map
(ar=67.6°, 64.4°, 60.0° in FipA,C,E) with respect to the projects all possible initial apex heighsto the desired apex
range of allar with stable fixed points in Fi@A—-C are used. heightyi+1=yconTROL
After the first three steps in steady state running, leg stiffness As a consequence of the dynamics of the spring-mass
is permanently shifted. Without retraction, variations in legsystem, the apex heiglyt+1 is merely determined by the
stiffness within 18.2 and 22kN m1 are tolerated (FighA) preceding apex heiglyt and the selected angle of attamk
even without any stride-to-stride adaptations in the angle dfhis dependencyi+1(yi, tio) can be understood as a ‘fingerprint
attack (Fig5B). of spring-like leg operation’ and is represented as a surface in
By introducing leg retraction (Fi®C, wr=25degs™; Fig.6A. When applying any control strategyo(yi), this
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Fig. 5. The influence of retraction spe@d on the robustness of running is shown with respect to a permanent change in leg kititndssr

each runvx,0=5m s, yo=1m), the maximum and minimum leg stiffnessuf, kvax) required to keep the system in a periodic running
movement are depicted (A,C,E). The retraction anglédenoted in A,C,E) is chosen according to the mean retraction angle for stable fixed
points in Fig.3 atk.ec=20kN m~1, (B,D,F) The adaptation of the leg angle to the changed leg stiffness.

generalized surfacgi+1(yi, 0p) can be used to derive the the ag axis, whereas the retraction spaed determines the
corresponding return maps. slope of the control line. Thus, the retraction parameters have

For example, in the case of a ‘fixed angle of attack’ (ndlifferent qualities with respect to the control of running; if the
retraction:ao(yi)=0r=constant) the surface has to be scannedetraction speedr guarantees the stability (setting the range
at lines of constant angles (Fig. 6A, e.g. red linenp=68°). and the strength of attraction to a fixed point), then the
These lines are projected to the lefi{yi) plane in Fig6A  retraction angler selects the apex height of the corresponding
and match the return map in F8A. fixed point ycontroL. Due to this adaptability, a constant

Let us now consider the ‘optimal control strategy for stableselocity leg retraction model, as evaluated in this paper, can
running’ ao(yi) fulfilling vyi+1(yi)=ycontroL=constant. Using significantly enhance the stability of running compared to the
the identified fingerprint, this simply requires us to search fofixed angle control model described by Seyfarth et al. (2002).
isolines of constangi+1 on the generalized surfagei(yi, do),
as indicated by the green lines in g\ (yi+1=1, 1.5 and ). Influence of speed on the stability of spring-mass running
The projection of these isolines onto the, {i) plane represents  The return maps in Figsand 4 indicate that the generalized
the desired ‘natural’ control strategyo(yi) for spring-mass surfaceyi+1(yi, 0o) is a function of the forward running speed.
running as depicted forcontro=1, 1.5, 2m in Fig.6B. The selected retraction speeds in ”Fgand 4 @r=0, 25,

The constant-velocity leg retraction model put forward in50degs™) show that the slope of the return mwgpi(yi)
this paper represents a particular control stratey) relating  generally increases with (1) decreasing running speed and (2)
the angle of attackig to the apex heighy; of the preceding decreasing retraction speeg. As a consequence, running at
flight phase (EquaticB), as shown in FigB for different 3 msis not stable using a fixed angle of attack%0 in
retraction speedsy(=0, 25, 50, 7Slegs™) and one retraction Fig. 4A), but is stable using non-zero retraction speegds?5
angle ((r=60°). It turns out that this particular leg retractionand 50degs™ in Fig.4B and C, respectively). Hence, even
model can approximate the natural control strategy within at slow forward running speeds3ms7), there exists a
considerable range of apex heights if the proper retractionatural control strategy represented by the isolines of the
parametersoRr, wr) are selected. The value of the retractioncorresponding generalized surface withi(yi, dg)=constant.
anglear shifts the line of the retraction contreb(yi) along In comparison with the fixed angle of attack control, leg
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Fig.6. (A) A three-dimensional (3D) representatign(yi, ao) of the return mapi+1(yi) characterizes spring-mass running (system energy
corresponds tox=5 m st at yapex=1 m; m=80Kkg, lo=1 m, k=20kN m1) for different angles of attaako. For fixed angles of attack (slices in
3D), the corresponding return maps are shown on theylefi+{) plane. The red line depicts the return mapofgr68°. Different return maps
are possible if the angle of attagk becomes dependent on the apex heyghin ‘optimal’ control model with respect to stability would be a
direct projection of any initial apex heigitto a desired apex heighitonTroLin the next flight phase, of+1(yi)=yconTrROL=CONStant, as
shown for apex heights of 1, 1.5 anan2(left plane). This corresponds to isolines on the 3D-suifa¢@yi, 0o) indicating a dependency
between the angle of attacl and the initial apex heighti, as shown foycontroi=1, 1.5 and 2n in (B). With careful selection of the
retraction velocitywr and the retraction angéer, the constant velocity leg retraction model can approximate the optimal control strategy.

retraction at constant velocity approximates this natural control Using this apparatus, we conducted experiments on five
(Fig. 6B). Thus, a constant velocity retraction is a successfuhale subjects (body mass 79.6tkf) age 30.6+3.9rs)
strategy to stabilize running below the critical forward runningperforming treadmill running at ®s1. We measured leg
speed where stable running is not achievable using a fixédnematics (leg angle, leg length) during both the stance and
angle control. swing phases. Leg angte and lengthl ec at the onset of

The fact that the spring-mass model, with retraction, is stabkwing-leg retraction and at touch-down were used to
at slow forward running speeds seems critical. Clearly, for aharacterise the kinematic leg control prior to landing. The
running model to be viewed as a plausible biologicafretraction velocitywr was estimated as the mean angular
representation, the model should be stable across the full rangelocity within the last 20ns before touch-down. Furthermore,
of biological running speeds. Without swing-leg retractionthe leg stiffnes ec was approximated using the maximum
the spring-mass model could not be stabilized at slowertical ground reaction forcEmax and the maximum leg
biological running speeds (+8s? for m=80kg, lo=1m,  compressionAlyax=max(o-) during stance phase with
k.ee=20kN m~1; Fig. 4A), but with retraction, the spring-mass k ec=Fmax/Almax .

model could readily be stabilized (F#B,C). For undisturbed running, we found surprisingly uniform leg
kinematics during both the stance and swing phases (shown for
Swing-leg retraction in human running: preliminary one subject in FigZ). In contrast, when passing over the
experimental results obstacle, swing-leg kinematics were altered significantly, but

A treadmill (Woodway, Germany) was equipped with anstance period dynamics immediately following the obstacle
obstacle-machine designed to disturb swing-phase dynamiegere largely unaffected. Swing-leg retraction was observed in
during human running. The obstacle-machine consisted of indisturbed running with an angular range equal to
cylindrical-shaped bar (2&m diameter, 4@8m length) passing asniFt=4.5t0.9° (Tablel). During this period of swing-leg
from the left to the right side of the treadmill walkway (theretraction, only a minor change in leg length was observed
bar’s long axis is generally perpendicular to the direction oflsHiFt=1+0.5cm), supporting one of the assumptions of our
the moving treadmill surface). Every 9-46the bar moved control model.
towards the human runner at a speed equivalent to the treadmillWe observed a significant re-adjustment of leg retraction in
surface, forcing the runner to change his swing-phasgesponse to the disturbance. Both the retraction angular range
kinematics to avoid the obstacle. The movement of the obstadgHirt (AdsHiFT=4.7£3.0°, P<0.05, pairedt-test) and the
bar was triggered by the ground reaction foFceFor each retraction velocitywr (Awr=22+13degs™?, P<0.05) increased
experiment, the bar was positionedch?2 above the moving in response to the disturbance. Here, the change in the angular
treadmill surface. rangeAasHiFT was primarily the result of a decreased retraction
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Fig. 7. Leg kinematics (leg lengtversusleg angle) during treadmill running an®s-1. For the undisturbed condition, the meas.z: of 35
running steps for one male subject K& are shown (A). The leg length=c was measured as the distance between hip and toe marker. The
leg anglea is defined as the projection angle with respect to the ground1{Fi§wing-leg retraction is present between the onset amgle
(lengthIr) and the angle of attadko (lengthlo) as shown magnified in (B). For the disturbed swing phase, the leg operation of the same
experimental subject is plotted. Although only a single subject is depicted here, similar results were observed in altaksebjaets (see
Tablel).

Tablel. Obstacle running

kLG 0o OR OSHIFT WR lo Ir IsHIFT
(kN m1) (degrees) (degrees) (degrees) (&g (m) (m) (m)
Undisturbed running 25.2+6.8 68.8+2.1 64.3t2.0 4.5+0.9 13749 0.932+0.020 0.942+0.018 -0.010+0.005
Disturbed running 22.9+3.6 70.4+2.7 61.3x1.5 9.1+3.6 159421 0.949+0.018 0.959+0.017 -0.010+0.011
Difference (disturbed — undisturbed) -2.3+4.4 1.7¢2.1 -3.0£2.5 4.7£3.0* 22+13* 0.017+0.021 0.017+0.023 0+0.010

Values are meanss. (N=5 subjects).

kiec, leg stiffnesspo, angle of attackpr, onset angle of retractiomsHiFT=00—0R, angle swept during retractiowr, retraction velocity
(mean value of the last 20s before touch-downlg, leg length at touch-dowi, leg length at onset of retractidgnirt=lo-r, the shift in leg
length during retraction (see Fig.

In the undisturbed condition, at least 39 steps are evaluated for each subject.

Between 3 and 4 disturbed steps are used during obstacle avoidance.

The leg stiffness is measured in the stance phase immediately following the disturbance.

Differences between undisturbed and disturbed data are evaluated for significance using-tegai®0.05).

anglear (Aar=—3.0+2.5°,P=0.057) rather than an increased Alternative biological strategies to stabilize running
angle of attackaop (Aag=1.7+2.1°, P=0.15). In contrast, The analysis reveals that the stability of spring-mass running
no significant change was observed in leg stiffnesss highly sensitive to the angular velocity of the leg before
(AkLeG=—2.3+4.4kN m~1, P=0.31) or in leg length adjustment landing. Although swing-leg retraction seems an important
(AlsHiFT=0£1.0cm, P=1) during the stance period immediately stabilizing mechanism, we cannot ignore the importance of
following the disturbance. alternative strategies that might also be crucial for stable
These results indicate that leg retraction is employed irunning. For instance, researchers have shown that visual
human running and is even enhanced when an obstadieedback plays an important role in obstacle avoidance and,
disturbance is applied. The data presented here support ttherefore, in stabilizing the movement trajectory. Warren et al.
hypothesis of the model, namely, that swing-leg retraction is @1986) investigated regulatory mechanisms to secure proper
strategy used in running to select an angle of attack th&boting using visual perception in human running. In their
sustains a desired movement pattern. investigation, subjects ran on a treadmill across irregularly
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spaced foot-targets in order to effectively modulate step length List of symbols
and the vertical leg impulse during stance. Although theig system energy
results suggest that vision is important for running stabilityg vertical ground reaction force
they do not specifically address the issue of how mechanicgl vertical component of the gravitational acceleration
or neuro-muscular mechanisms may contribute when running index
over ground surfacesithoutfooting constraints. kiec leg stiffness
Intrinsic or ‘preflex’ leg stabilizing mechanisms may also bg leg length
important for running stabilization. It is well established thatm mass
the intrinsic properties of muscle leads to immediate responses time
to length and particularly velocity perturbations (Humphreyy, velocity
and Reed, 1983; Brown et al., 1995). In an analytical study horizontal position
Wagner and Blickhan (1999) showed that a self-stabilizing vertical position
oscillatory leg operation emerges if well-established musclgg retraction angle
properties are adopted. WR retraction speed

Furthermore, by modeling the dynamics of the muscle-reflex _
system, stable, spring-like leg operations can be achieved in NS research was supported by an Emmy-Noether grant of

numerical simulations of hopping tasks if positive feedback of th'® German Science Foundation (DFG) to A.S. (SE 1042/1)
muscle force sensory signals (simulated Golgi organs) afd'd @ grant of the German Academic Exchange Service
employed (Geyer et al., in press). These results suggest that durfRf*\P) ‘Hochschulsonderprogramm Il von Bund und

cyclic locomotory tasks such as walking or running, the bodj-ander’ to H.G. We also thank the Michael and Helen

could counteract disturbances even during a single stance perictghaffer Foundation of Boston, Massachusetts for their
generous support of this research.
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