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Introduction 

 In this computer-assisted exercise students explore the fundamental concept of allometry (the 
study of size and its consequences), examine the relationship between size and shape, and learn how 
to quantify changes in proportions.  Specifically, they investigate how mammals of various sizes 
change proportions to compensate for changes of surface area and volume.  Interactive computer 
programs aid each student in calculating standard dimensions from an illustration of an animal, 
process class data, identify lines of best-fit (using linear regression), and statistically test whether 
relationships between selected morphological variables exhibit isometric or allometric change. 
 This 3-hour laboratory exercise has been used in the introductory biology course at the 
University of Toronto (BIO110Y – The Nature of Living Organisms) annually since 1984/85.  The 
interactive computer programs that accompany this exercise were introduced in 1986/87 and 
1987/88 and are available as user-supported "shareware" (see Appendix D).  At the University of 
Toronto this exercise is performed each year by 400 students during a 1-week period (20 students 
per laboratory room, 80 students per laboratory time). 
 The activities in this laboratory do not require that students have taken a prior course in biology, 
however there is a heavy emphasis on the manipulation of quantitative data.  We assume that 
students have been exposed to graphing techniques, logarithms, determination of rates of change 
from graphs, and Student's t test.  At the University of Toronto this information is contained within 
a self-study manual (Goldman, 1987) which introduces the scientific method and "how to" collect, 
organize, analyze, interpret, and present the numerical data that students obtain in the laboratory. 
 This exercise defines allometry, allometric change, and isometric change, and emphasizes the 
importance of the ratio of surface area to volume (i.e., simply by growing larger the surface area of 
an object will continually decrease relative to its volume if its shape remains unchanged).  Students 
are required to complete (before the laboratory) a problem which relates to the ratio of surface area 
to volume.  An introduction to allometric equations, the allometric coefficient, log-transformations, 
linear regression, and dimensional exponents enables students to determine if a relationship exhibits 
isometric or allometric change.  In Part 1 students calculate surface area and volume from simple 
geometric shapes.  In Part 2 they investigate the relationship between the "size" of selected North 
American mammals and (1) minimum leg cross-sectional area and (2) the ratio of surface area to 
volume.  Students present the results of their investigations from Part 2 in a formal laboratory report 
which is due the following week. 

Reprinted from: Goldman, C. A., R. R. Snell, J. J. Thomason, D. B. Brown. 1990. Principles of Allometry.  Pages 
43-72, in Tested studies for laboratory teaching. Volume 11.  (C. A. Goldman, Editor).  Proceedings of the Eleventh 
Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 195 pages. 
 
Although the laboratory exercises in ABLE proceedings volumes have been tested and due consideration has been 
given to safety, individuals performing these exercises must assume all responsibility for risk. The Association for 
Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of 
the exercises in its proceedings volumes. 
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 For the instructor there are two important books that provide an introduction to the importance 
of animal size and the basic principles of allometry: Scaling: Why is animal size so important? by 
Schmidt-Nielsen (1984) and On size and life by McMahon and Bonner (1983).  Additional 
references include Calder (1984), Gould (1966, 1977), Peters (1983), Reiss (1989), Schmidt-Nielsen 
(1975), Smith (1980), and Sweet (1980). 
 
 
 Notes for the Instructor 
 
Materials (per 20 students) 
 
1. IBM-compatible XT/AT computers (minimum of two for 20 students) with at least a 

monochrome (Hercules-compatible) graphics card and a 5 1/4" (360 KB) or 3 1/2" (720 KB) 
floppy disk drive; a hard disk drive is desirable, but not mandatory.  The programs are only 
available for IBM-compatible computers. 

 
2. Dot-matrix printers (one per computer) and computer paper (9 1/2" x 11" perforated, continuous 

sheets). 
 
3. Set of 26 different mammal illustrations. 
 
 Photocopies of the color engravings in The Art of Audubon: The Complete Birds and Mammals 

(John James Audubon, Times Books, 1979; ISBN 0-8129-0841-4) are excellent since the 
illustrations are large and the entire animal is viewed unobstructed and from the side.  For 
permission to reproduce these engravings contact: Random House, Inc., 201 East 50th Street, 
New York, NY 10022, Attention: Permissions Department (27th Floor). 

 
 Twenty-six selected mammals (including the bison—used to demonstrate CALCULATOR 

program) from The Art of Audubon are (page number, scale factor), in increasing size:  
 
star-nosed mole (535, 1:2.5) 
lemming (548, 1:2.2 [rear], 1:2.4 [fore]) 
field mouse (581, 1:1.8) 
meadow vole (516, 1:3.0) 
wood rat (585, 1:2.2) 
long-tailed weasel (599, 1:3.0) 
Albert's squirrel (613, 1:2.8 [left]) 
shorttail weasel (601, 1:3.4) 
ground squirrel (637; 1:2.6) 
yellow-bellied marmot (510, 1:3.5) 
muskrat (546, 1:2.7 [animal at right]) 
jackrabbit (554, 1:2.4) 
peccary (539, 1:6.1) 

 
porcupine (550, 1:3.8) 
raccoon (588, 1:4.3) 
otter (566, 1:4.8) 
black wolf (521, 1:11.0) 
red wolf (525, 1:8.9) 
cougar (543, 1:8.8) 
pronghorn (505, 1:17.2) 
mountain goat (527, 1:18.9) 
blacktail deer (530, 1:14.3 [fore]) 
moose (534, 1:27.8) 
elk (540, 1:19.9) 
polar bear (652, 1:12.2) 
bison (519, 1:20.7) 

 
4. 20 vernier calipers and/or 20 metric rulers (clear, minimum of 20 cm in length). 
 
5. 60 sheets of white bond paper: 8 1/2" × 11", light weight suitable for tracing. 
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6. Three computer programs: (a) CALCULATOR aids each student in calculating standard 
dimensions from their mammal illustration; (b) CLASSDATA processes the class data to be 
used in the student's assignment; and (c) REGRESSION identifies lines of best-fit using linear 
regression and statistically tests whether the relationships between selected morphological 
variables exhibits isometric or allometric change.  These programs are available as user-
supported "shareware" (see Appendix D). 

 
7. 10 sets of three-dimensional acrylic geometric shapes (one set for two students). 
 
 The seven shapes (dimensions in Appendix F) are as follows: cube, short rectangular solid, long 

rectangular solid, short cylinder, long cylinder, pipe, and sphere.  Acrylic rods of each specific 
shape can be purchased from a local plastics supply company and cut to size either by the 
supplier or in-house. [In Toronto: Warehoused Plastic Sales Inc., 13 Blackburn St., Toronto, 
Ontario M5M 2B3, (416) 465-3591]  NOTE: If acrylic shapes cannot be obtained, students can 
measure two-dimensional shapes drawn on paper. 

 
8. Copy of table to record class data for entry into CLASSDATA program; including student's 

surname, name of animal, surface area (dm2), volume (dm3), SIZE (dm), and minimum-leg 
cross-sectional area (cm2) for each animal. 

 
9. Students are required to bring their own calculator to the laboratory. 
 
 
Procedures 
 
1. In Part 1 students measure seven acrylic geometric shapes (and entering these data in Table 

4.2).  Measuring these shapes will give students much needed practice before they measure the 
shapes from their mammal illustration.  Values are given in Appendix F.   

 
2. Each student will calculate dimensions from one mammal illustration.  To simplify taking 

measurements students may wish to (a) trace shapes onto a second sheet of paper (easier to read 
measurements) and (b) use calipers to make measurements directly from the page (easier to read 
than from a ruler).  Students should be encouraged to read Appendix C very carefully.  They 
must first convert from "size of drawing" to "actual size of animal" (multiplying by scale factor 
given on illustration) before calculating dimensions.  Decimeters are used in order that size is 
expressed in values that are meaningful; for example, the surface area of a bison is 
approximately 872 dm2 or 87,200 cm2, the latter appears excessively large. 

 
3. CALCULATOR (by David Brown, Corey Goldman, and Richard Snell) assists in the 

calculation of surface areas (SAs) and volumes (VOLs) of simple and complex geometric 
shapes (sphere, cylinder, cone, spheroid, frustum); thus eliminating time-consuming 
calculations and greatly reducing errors.   

 
 Specifically students are to calculate the SA, VOL, SIZE, and minimum-leg cross-sectional area 

(MLXA) of a selected North American mammal based on the dimensions taken from their 
Audubon illustration (scale provided on illustration).  Once measurements are recorded from the 
illustration and manipulated they are entered into the program as requested.  CALCULATOR 
generates a "picture" to "double check" the entry of data and prints for each student a 
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"computer-copy" of their mammal illustration and a printed summary of the results.  The 
instructor can demonstrate how the program operates by entering data for the bison (see 
Appendix G); sample output is provided in Appendix H. 

 
4. CLASSDATA (by David Brown and Corey Goldman) assists in the collection and distribution 

of class data. 
 
 At the end of the laboratory the instructor enters the following for each student: student's 

surname, student number, name of animal, and four variables (SA, VOL, SIZE, and MLXA).  
The instructor can add, delete, change, display, sort, print, or plot the data at any time.  
CLASSDATA prints all data as entered and calculates four additional variables (SA:VOL and 
three log values) for each entry; these data are used in the student's assignment.  Photocopies of 
the class data table are distributed to students the following day. 

 
5. REGRESSION (by Jeff Thomason) utilizes linear regression in order that students can find a 

line of best-fit to data plotted as y versus x, and tests whether the relationship between 
morphometric variables exhibits isometric or allometric change [by (a) predicting the isometric 
slope (and then performing a t test to determine if the actual slope of the regression line is 
significantly different to the predicted isometric slope), and (b) using the 95% confidence limits 
of the actual slope]. 

 
 Students enter paired data (x, y); entry of the predicted isometric slope is optional.  Printed 

results include: data necessary to plot regression line and upper and lower 95% confidence 
limits, slope of the regression line and 95% confidence limits, summary of the t test of 
calculated versus predicted slopes, and raw and log-transformed data.  REGRESSION prints a 
final plot of the data on the screen to allow students to check the entry of data and illustrate 
what their plot should look like; this plot cannot be printed on the dot-matrix printer (the intent 
is to give students practice at graphing).   

 
 NOTE: Due to insufficient time and an insufficient number of computers it is not recommended 

that students use REGRESSION during the 3-hour laboratory period.  At the University of 
Toronto a computer room is open for several hours each day for student use.  Although the 
results of the regression program will be the same for all students within a class, every student 
should be encouraged to use REGRESSION, either independently or in pairs.  Each student uses 
the program twice: to investigate the relationship between (a) MLXA and SIZE, and (b) 
SA:VOL and SIZE. 

 
7. Appendices A to C are to be included in the outline for the students.  Appendices D to H are for 

the instructor. 
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 Student Outline 
 
Introduction 
 
 The diversity of living organisms is astounding.  However, despite many peculiarities, a striking 
"lawfulness" in the basic design of organisms is evident—largely the correlation of size and shape.  
Animals are physical objects and are shaped to their advantage by natural selection.  Consequently, 
they must assume forms best adapted to their size. 
 Blue whales, the largest animals, are aquatic and are able to attain their great size only because 
they are supported by the water in which they live.  If a bird is to fly, its weight, which is directly 
related to its size, tends to remain below a certain limit.  Therefore, it is not surprising that all very 
large birds, such as ostriches, emus, and dodos, lost the art of flying.  Why are there "flying" 
squirrels but no animals the size of elephants that climb trees and glide about on webs of skin 
stretched between their appendages?  Why are the smallest mammal (the dwarf shrew) and the 
smallest bird (the Cuban Bee Hummingbird) both about the same length (4 to 5 cm) and weight 
(approximately 3 g)? 
 In this laboratory you will examine the relationship between the size and shape of organisms 
and learn how to measure changes in proportions.  This will be done by measuring change in shape 
without changing volume (Part 1), and examining changes in size and shape of mammals (Part 2).  
Both the collection and analysis of data for Part 2 will be aided by computer programs. 
 
 
Allometry  
 
 Changes in size and shape were understood in a general way, but they were difficult to measure 
in a useful fashion, until Julian S. Huxley, the well-known British zoologist, and (independently) the 
French zoologist Georges Teissier developed the method of "relative growth" or allometry. 
 Allometry describes the relationships between dimensions of organisms and changes in the 
relative proportions of these dimensions with changes in absolute size.  The term refers to 
comparisons between individuals of the same species (intraspecific) and among different species 
(interspecific).  For example, not only are the proportions of a chick quite different from those of a 
hen, but the proportions of a hen are quite different from those of an eagle. 
 
 
Length, Surface Area, and Volume 
 
 Imagine two organisms of which the smaller is an exact scale model of the larger.  If the larger 
is n times as long as the smaller, any organ of the larger is n times as long, n times as broad, and n 
times as thick as the corresponding organ of the smaller organism.  The organs must therefore have 
n2 (n × n) times the surface area (denoted SA) and n3 (n × n × n) times the volume (denoted VOL) of 
the corresponding organ in the smaller organism.  (This occurs because SA increases as the square 
of length [denoted L; L × L] and volume increases as the cube of length [L × L × L].)  If they are 
constructed of the same materials, the weight of the larger organism is n3 times the weight of the 
smaller organism, since weight is proportional to volume.  Thus, in these organisms (∝ = is 
proportional to): 
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 SA ∝ L2 (or, L ∝ SA0.50) 
 
 VOL ∝ L3 (or, L ∝ VOL0.33) 
 
 SA ∝ VOL0.67 (or, VOL ∝ SA1.5) 
 
 As will be demonstrated, in this elementary example lies a principle of profound biological 
significance. 
 
 
Ratio of Surface Area to Volume 
 
 Consider the change in the ratio of surface area to volume (denoted SA:VOL) in a series of 
cubes of different sizes (Table 4.1).  SA increases in proportion to the square of the length, and 
VOL is proportional to the cube of length.  Observe what happens to SA:VOL.  Simply by growing 
larger the surface area of any object will continually decrease relative to its volume when its shape 
remains unchanged.  Why is this important to animals? 
 
 Table 4.1.  Relation of surface area (SA) and volume (VOL) in a series of cubes. 

 

 
Length of side 

cm 
SA 
cm2 

VOL 
cm3 

SA:VOL 
cm-1 

1 6 1 6.00 
2 24 8 3.00 
3 54 27 2.00 
4 96 64 1.50 
5 150 125 1.20 
6 216 216 1.00 
7 294 343 0.86 
8 384 512 0.75 
9 486 729 0.67 
10 600 1000 0.60 

 
 
 
 Many bodily functions depend upon SA:VOL.  For example, both heat and water exchange 
occur across surfaces of animals.  In the evolution of large and complex organisms, the specialized 
development of internal organs has been particularly important as a compensatory mechanism for 
the relative decrease in surface area.  For example, the highly convoluted surfaces of the alveoli 
(air-filled sacs) of the lung promotes efficient gas exchange; similarly, the villi (finger-like 
projections) of the small intestine increase the relative surface area available for the absorption of 
nutrients. 
 Some simpler organisms have never evolved internal organs and in becoming larger, important 
restrictions have been placed on their shape.  For example, a tapeworm may be 7 m in length, but its 
thickness cannot exceed a fraction of a centimeter because food and oxygen must penetrate from 
external surfaces to all parts of the body. 
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 Other organisms are constrained to remain small.  Why are there no very large insects (with the 
exception of those in B movies)?  A factor which contributes to the limitation of size is the method 
insects use to respire.  In insects, air is carried directly to the tissues by diffusion through a series of 
tubes—the trachea and tracheoles.  (Insect blood plays no role in oxygen transport.)  The volume of 
oxygen supplied by the tracheal tubes is proportional to the cross-sectional area of these tubes, but 
the cross-sectional area does not increase in proportion to the insect's body weight.  Because 
diffusion distances are greater in larger insects, oxygen supply is consequently proportionally 
reduced and thus body size is limited. 
 The principle of adjusting bodily proportions with increasing size may well be the most 
important determinant of the shape of organisms.  J. B. S. Haldane (1927:21) once wrote that 
"comparative anatomy is largely the story of the struggle to increase surface in proportion to 
volume."   Stephen J. Gould (1977:178) ended an essay on size and shape with the following: 
 
 "I once overheard a children's conversation in a New York playground.  Two young girls 

were discussing the size of dogs.  One asked: `Can a dog be as large as an elephant?'  Her 
friend responded: `No if it were as big as an elephant, it would look like an elephant.'  How 
truly she spoke." 

 
 
Allometric Versus Isometric Change 
 
 Allometric change occurs when the proportions of an organism adjust to the different rates at 
which surface area, volume, and other physical parameters change with differing sizes.  It is 
sometimes referred to as differential scaling. 
 Isometric change occurs when each dimension of an organism is scaled up or down regardless 
of the disproportionate change in such parameters as surface area and volume.  If x doubles in 
length, then so does y.  The proportions remain constant and do not change with a change in size.  
McMahon and Bonner (1983) suggest that an easy way to picture this in one's mind is to think of a 
photographic enlargement.  If it is a photograph of a horse, then the horse's proportions remain the 
same whether one looks at a small contact print or a big enlargement.  A simple example of 
isometric change is provided by the series of cubes of different sizes discussed above.  Isometric 
change is sometimes referred to as geometric similarity. 
 (The term allometric means literally "by a different measure", from the Greek allois, different.  
By contrast, isometric means "by the same measure.") 
 
 
Problem 
 
 Before proceeding further answer the following problem which relates to SA:VOL.  This 
problem will be discussed by your instructor at the beginning of the laboratory. 
 
 A multicellular, spherical, aquatic organism has a central cavity containing water.  It does not 

exchange oxygen with this central fluid.  The radius of the entire organism is 2 cm, and the 
radius of the central cavity is 1.5 cm.  This organism can obtain enough oxygen from the water 
surrounding it if the dissolved oxygen in the water equals 4 ml per liter.  Could the same 
organism grow to have a radius of 4 cm if the oxygen concentration of the water were increased 
to 6 ml per liter?  Consider what would happen both in a situation of isometric and allometric 
growth (that is, in one instance the layer of cells becomes 1 cm thick, while in the other the 
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layer of cells remains 0.5 cm thick.)  Give reasons for your answer and show all your 
calculations.  (Consider only the external surface area and assume that the cytoplasm is 
thoroughly mixed, thus the diffusion distance may be ignored.) 

 
 
Allometric Coefficients 
 
 The relationship of one variable with respect to another can be summarized by the allometric 
coefficient of the equation of the relationship.  The value of this coefficient must be considered 
when determining whether a particular relationship exhibits isometric or allometric change.  If a 
relationship is not isometric, the allometric coefficient will indicate which linear dimension 
increases at a faster rate than the other. 
 To obtain the allometric coefficient, we could express the first variable as a function of the 
second, using the general exponential equation: 

   y = βxα 
 In this equation, α (alpha) is the allometric coefficient relating the x-variable to the y-variable.  
The coefficient β (beta) is a constant.  (There is a large and inconclusive body of literature dealing 
with the biological significance of the β coefficient, but we will not consider it in this laboratory.)  
 In Figure 4.1A, SA of a series of fictitious animals is expressed as an exponential function of 
VOL.  You will note that we can also express the curvilinear (= curved line) relationship of VOL to 
SA by reversing the axes, as in Figure 4.1B, thereby expressing a different exponential equation.  
You will note that the allometric coefficients obtained, 0.6680 and 1.4945, are the inverse of each 
other. 
 The allometric coefficients can be obtained directly from the data by determining the 
exponential equation which best "fits" the data.  However, this is difficult to obtain unless the 
logarithms (log10) of the data are used.  When using log–log plots of data, determining the 
allometric coefficients which relate two variables is quite simple.  
 We have log-transformed and re-plotted the data on SA and VOL in Figures 4.1C and 4.1D; you 
will notice that the curvilinear relationships found in these plots are now linear—the relationships 
are described by straight lines, of the simple form: 

 log10y = αlog10x + log10β 

  The coefficients α and log10β in this linear regression equation have the same values as the 
coefficients α and β in the exponential equation which described the raw data.  In this linear 
equation, α, the slope of the line, is the allometric coefficient. 
 Typically, with real data from real organisms, the points do not cluster so tightly around either 
curved lines on raw data plots or straight lines on log–log transformed plots.  This is to be expected, 
and calculating the α and β coefficients which define the "best" line through a relationship would be 
rather tedious without a computer program capable of determining regression equations. 
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 Figure 4.1.  Computer-generated plots illustrating the relationship between surface area 
(SA) and volume (VOL) for a series of fictitious animals; corresponding  log-transformed 
relationships in plots C and D.  See text for details. 
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Regression 
 
 Regression is a statistical procedure that allows you to find a line of best-fit to the data plotted 
as y versus x.  You will use a computer program (outside of laboratory time) to identify lines of 
best-fit for the data collected in this laboratory.  The results of this program will be used in your 
assignment.  Instructions are provided in Appendix A. 
 
 
About the Plots in Figure 4.1   
 
 The plots in Figure 4.1 were computer-generated and should not be used as examples when 
preparing the graphs in your assignment; see section 4.2 in BIOMETRICS (Goldman, 1987) for 
acceptable ways to graph quantitative data.  Note that since the data are from a series of fictitious 
animals, no units are provided.  
 
 
Determining if a Relationship is Isometric 
 
 Determining what the value of the allometric coefficient (α) would be if the relationship 
between two variables is isometric is done by comparing the dimensional exponents of the 
variables being compared.  That is, are the variables linear dimensions such as length or width 
(dimensional exponent = 1), squares of linear dimensions such as surface area (dimensional 
exponent = 2), cubes of linear dimensions such as volume (dimensional exponent = 3), or, 
dimensionless such as length/width (dimensional exponent = 0)?  (Weight is a three-dimensional 
measure and has a dimensional exponent of 3.) 
 The α-value that would be associated with an isometric relationship is determined by dividing 
the dimensional exponent of the y-variable by the dimensional exponent of the x-variable (i.e., y/x).  
A few examples will serve as an illustration.   
 If length and width are isometrically related, α will be 1 (i.e., 1/1).  If length is isometrically 
related to surface area, α will be either 2 or 0.5 (depending on which dimension is plotted on which 
axis).  If length is isometrically related to volume, α will be either 3 or 0.33.  If volume is 
isometrically related to surface area, α will be either 1.5 or 0.67.   
 If the relationship of length/width and height is isometric, α will be either 0 or infinity.  The 
dimensional exponent for a ratio (e.g., length/surface area) is calculated by subtracting the 
exponent of the numerator by the exponent of the denominator (e.g., 1 - 2 = -1). 
 If a morphometric relationship is not isometric, then α will have any value except the isometric 
one.  The regression program described in Appendix A provides two ways to statistically test 
whether the relationship between morphometric variables is isometric or allometric; either of these 
methods will be used in your assignment. 
 
 
Limitations of Allometry 
 
 Preparing an allometric plot and determining the relationship between the variables and the 
allometric coefficient do not in themselves explain the change in proportions; they merely show 
precisely that there is a change in proportions with a change in size.  One cannot dogmatically 
answer the question, Why do such changes in proportions occur?, but one can set up interesting and 
reasonable hypotheses that are supported by the experimental data. 
 



 

 

 Part 1: Change in Shape Without Change in Volume   
 
 The first exercise illustrates how organisms can compensate for a reduction in SA:VOL by 
changing shape.  To demonstrate the effect of changing shape alone, you will look at a series of 
acrylic shapes all of which have approximately the same volume.  It is important to know how to 
calculate specific dimensions for simple shapes before you must do so for more complex shapes in 
Part 2.   
 
 Each student should measure the seven acrylic shapes and complete Table 4.2.  Does it matter 

whether you measure the same face on the cube each time?  The formulae for calculating SA 
and VOL for these shapes are in Appendix B.  Before you proceed with Part 2, check with your 
instructor to be certain Table 4.2 is completed correctly. 

 
  The dimensions of the acrylic shapes you measured vary considerably.  Although they appear 
unrelated in all respects, the volumes are approximately the same.  This similarity is by intention to 
illustrate the interrelationship of volume and shape.   
 
 Table 4.2.  Summary of measurements for seven acrylic geometric shapes. 
 

SHAPE Length 
(cm) 

Width 
(cm) 

Height 
(cm) 

LxW 
(cm2) 

HxW 
(cm2) 

SA 
(cm2) 

VOL 
(cm3) 

SA:VOL
(cm-1) 

 
Cube 
 

 xxx xxx xxx xxx    

 
Short 
rectangular 
solid 
 

        

 
Long 
rectangular 
solid 
 

        

 
SHAPE Outer Radius (R) 

(cm) 
Inner Radius (R’) 

(cm) 
Length 
(cm) 

SA 
(cm2) 

VOL 
(cm3) 

SA:VOL 
(cm-1) 

 
Short 
cylinder 
 

 xxx     

 
Long 
cylinder 
 

 xxx     

Pipe 
 

      

Sphere 
 

 xxx xxx    
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Part 2: Allometry Experiment 

 In the second exercise you will investigate how animals of different sizes change proportions to 
compensate for changes of SA and VOL.  In particular, you will look at the allometry of total 
surface area (SA), total volume (VOL), minimum leg cross-sectional area (MLXA), and body size 
(SIZE) for a series of North American mammals.   
 But first, we should consider just what size is.  We have defined allometry, but not size.  
Intuitively, size is a measure of how big something is.  But what does "big" really mean?  For 
instance, which individual would you consider larger: a linebacker on a football team or a forward 
on a basketball team?  How might you decide?  The problem comes down to how size is quantified.  
There are numerous possibilities, but no general agreement among biologists on either how size 
should be measured or even what size really is.   
 The greatest length of an organism has often been used to estimate overall size.  This is fine 
when comparing flatworms with flatworms, but what about when comparing flatworms with 
humans, salamanders, locusts, clams, and swordfish?  Some researchers have used volume, while 
others have used the cube root of volume.  Others have used extremely complex mathematical 
models to derive imaginary "size" vectors.  Recently, many researchers have simply taken an 
arbitrary number (though typically quite a large number) of arbitrary linear measurements on each 
animal, and have then taken the average of these measurements.  Averages are then considered to be 
a measure of size and can be compared.  What would you do?  And how would you quantify shape 
in such a way that it is independent of size?  (This is both a complex and current problem; a 
graduate student earned a Ph.D. from the University of Toronto for work on this very question.) 
 In this laboratory you are going to use the cube root of volume as a measure of size (hereby 
denoted as SIZE):   

SIZE = "Head + Neck + Body" Length 

Objectives 

 Each student will be given one illustration of a North American mammal (20 different animals 
per room) and will calculate (with the aid of a computer program) an approximation of its (1) total 
surface area (SA), (2) total volume (VOL), (3) minimum leg cross-sectional area (MLXA), and (4) 
SIZE.  You will be investigating the following: 
 
1. The relationship between MLXA and SIZE:  The strength of a leg bone depends upon the area of 

its minimum cross-section (MLXA), but the legs must support a body that increases in weight 
as the cube of its length.  You will determine the relationship between MLXA and SIZE for the 
North American mammals examined in the laboratory.  Does this relationship exhibit isometric 
or allometric change? 

 
2. The relationship between SA:VOL and SIZE:  As mentioned earlier, by growing larger the 

surface area of an object will continually decrease relative to its volume when its shape remains 
unchanged.  You will determine the relationship between SA:VOL and SIZE for the North 
American mammals examined in the laboratory—ranging in size from a mouse to a bison.  Does 
this relationship exhibit isometric or allometric change? 
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Procedures for Part 2   

 Using Figure 4.2 as a guide, you will notice that a quadruped (four-legged animal) can be 
summarized by eight body segments (head, neck, body, four legs, and tail).  To keep things simple,  
each body segment will be summarized by only one geometric shape and you will be limited in the 
choice of shapes for each segment. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.2.  Typical quadrupeds summarized by various geometric shapes. 
 
 It is very important to study Appendix C (a detailed discussion on calculating SA and VOL for 
a quadruped) before proceeding to take measurements from your animal illustration.  (It is also 
highly recommended that you prepare a protocol for this laboratory.)  A summary of things to do is 
as follows:  
 
1. Each student is to summarize SA and VOL, for one animal, as a combination of six body 

segments (it is assumed that both forelegs are the same shape as each other, and that the rear 
legs are the same as one another).  Use whichever geometric shapes best approximate the 
specific animal you are working on.  (For instance, simple cylinders may be appropriate for the 
legs of an elephant, but frustums may be more appropriate for the legs of an armadillo.)  When 
calculating SAs, the computer program will not include surfaces which are not on the animals 
exterior, such as the proximal end of the leg-tubes and the equivalent areas where the leg-tubes 
would attach to the body.  To keep things simple, you are restricted to the following geometric 
shapes (see Appendix B):   

 
  head: frustum, spheroid, sphere, cone, or cylinder 
  neck: frustum, cylinder, or absent 
  body: frustum, spheroid, or cylinder    
  legs: frustum or cylinder   
  tail: cone, cylinder, or absent   
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2. MLXA is calculated as the minimum cross-section of the smallest leg (not foot) taken above the 
ground (this would be just above the ankle in humans).  Do not include feet.  Assume that the 
leg is circular; MLXA is calculated as the area of a circle (see Figure 4.2).  MLXA is measured 
in centimeters.   

 
3. SIZE will be measured by the computer as the total length of the head, neck, and body. 
 
4. At the end of the laboratory your instructor will enter class data in the computer to generate a 

table of all class values to be used in your assignment. 
 
 
Computer-assisted Data Calculation 
 
 An interactive computer program will assist you in calculating several of the specific 
dimensions from your quadruped.  You will be requested by the program to select which shapes 
approximate each body segment and then to supply the specific parameters for each shape (for 
example: for a circular frustum provide r1, r2, and H in decimeters).  The program will list the 
values that you have provided and give you the opportunity to make corrections or alter your choice 
as to what shape best approximates a given body segment.  The program will then draw your animal 
based on the specifications that you have provided.  If you accept  this drawing (i.e., dimensions and 
shapes are correct) you can request a summary which will include: Total SA, Total VOL, SIZE, 
MLXA, SA:VOL, and the logarithms (log10) of SIZE, MLXA, and SA:VOL.  Detailed instructions 
will be provided by your instructor. 
 
 
 Assignment 
 
Objectives 
 
 In the format of a formal laboratory report, present the results of your investigations from Part 
2.  The marks assigned per section are as follows (total=150): Title and Introduction (20), Materials 
and Methods (5), Results (40), Discussion (70), and Conclusion (15).  Your report must not exceed 
1000 words in length (about four pages at 250 words per page; excluding tables, graphs, and 
literature cited) and should be double-spaced and, if possible, typed.  It should address, but not be 
limited to, the following:   
 
1. A brief synopsis of general materials and methods is all that is required in your Materials and 

Methods section; the details of the procedures for utilizing the computer programs should not be 
included. 

  
2. Your Results section should include: the computerized-drawing of your animal illustration, the 

class data, computer printouts from the regression program, and two graphs (see 4 and 5 below).  
Remember to highlight/summarize in writing the significant aspects of your results. 

 
3. The regression program (Appendix A) provides two ways to test for isometric versus allometric 

change (predicting the isometric slope and using the 95% confidence limits of the actual slope); 
either of these methods is acceptable. 
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4. On regular graph paper plot log(MLXA) vs. log(SIZE) for the mammals examined in the 
laboratory.  Which variable should be plotted along the x-axis and which one along the y-axis?  
Indicate which animal is represented by each point on your graph.  Discuss the relationship 
between MLXA and SIZE as indicated by the data. Does this relationship exhibit isometric or 
allometric change? 

 
5. Prepare a similar plot of log(SA:VOL) vs. log(SIZE).  Discuss the relationship between these 

two variables as indicated by the data.  Does this relationship exhibit isometric or allometric 
change?  Do smaller animals have greater or lesser SA:VOLs than larger animals?  Generally 
speaking, how might this be related to the animal's lifestyle? 
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There is a large and growing body of literature pertaining to allometry.  A computerized literature 
search in Biological Abstracts revealed 502 articles listed between 1985 and 1988 (4 years) that had 
allometry in the title or abstract, or as a key word.  Calder (1984) listed over 600 references. 
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 APPENDIX A 
 Regression 
 
 Regression is a statistical procedure that allows you to find a line of best-fit to data plotted as y 
versus x.  It is not the only procedure for fitting straight lines to data but is the most appropriate for 
the data you will be analyzing in this laboratory.  You will use a computer program to identify lines 
of best-fit for the data collected in this laboratory.  To use the program, just type the word 
REGRESSION and hit [Enter].  Instructions will appear on the screen.  
 An important reason for using regression is to test whether the relationship between 
morphometric variables is isometric or allometric.  This relationship is usually described by the 
slope of the regression line on a plot of log-transformed data.  In some cases it is possible to predict 
what the slope might be if the relationship is isometric.  For example, if you plot log(SA) against 
log(VOL) for a series of spheres, you would expect the line to have a slope of 0.67.  (Why would 
you expect this?)  
 The regression program provides two ways to test for isometric versus allometric change: 
predicting the isometric slope and using the 95% confidence limits of the actual slope.   
 
 
Predicting the Isometric Slope of the Line  
 
 After you have entered your data into REGRESSION, the computer will ask you to enter your 
prediction for the isometric slope of the line.  (If you do not have a prediction, just hit [Enter] and 
the predicted slope will be 0, which represents a horizontal line.)  The computer will then perform a 
t test and determine whether the actual slope of the regression line is significantly different at 
probability levels of 0.01 or 0.05 to your predicted isometric slope.  The null hypothesis is that the 
two slopes are not significantly different.  (To perform the t test, the computer compares the y-
values you actually enter with the y-values along the line of predicted slope.)  
 If you do predict the isometric slope, make sure you justify your prediction in your assignment.  
Why would you expect the slope to have that value?  
 
 
95% Confidence Limits of the Slope  
            
 The second method of testing for isometric or allometric change is to look at the 95% 
confidence limits of the actual slope.  These limits express how close your data are to the regression 
line.  In the examples given in Figure 4.1, the data points all lie extremely close to the line.  This is 
often true of data which have been log-transformed.  However, the data in the graph below are a 
little more scattered.  (Have they been log-transformed?) The solid line is the regression line, or line 
of best-fit.  It does seem to follow the trend, but would you have drawn that particular line as a line 
of best-fit?  
 The two dashed lines represent the 95% confidence limits of the slope.  They indicate that the 
slope of any line drawn between these two limits is not significantly different (P > 0.05) from the 
slope of the regression line.  
 You can use the 95% confidence limits of log-transformed data to test for isometry between 
your x- and y-variables.  The computer will provide you with values for the slopes of the 95% 
confidence limits.  You have to determine what the slope should be if the relationship between x and 
y is isometric.  If this isometric slope falls between the upper and lower 95% confidence limits, then 
the regression slope and the isometric slope are not significantly different (P > 0.05).  If the 
isometric slope lies outside the limits, then the slopes are significantly different (P < 0.05).  
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 Figure 4.3.  Plot of force of biting versus body weight. 
 
 Notice that the solid regression line and the two dashed lines all cross at a single point.  This 
point is at the mean of both x and y sets of values (, ), which will be useful to know if you choose to 
plot all three lines on the graphs in your assignment. 
 
       
Interpreting the Printout of Results  
            
 When the computer has analyzed your data it will display a screen summarizing the results and 
give you the option of printing them.  (A sample is provided in Figure 4.4.)  The screen display and 
printout will give the mean and standard deviation of your x and y data sets and the number (N) of 
values in each set.  The means may be of use when you are plotting your graphs.  The correlation (r) 
is another way of determining how close the data points are to the line and indicates the strength of 
the bivariate relationship.  It is included here for your interest.  
  In the middle of the screen are the important values: the slope of the regression line and the 
upper and lower 95% confidence limits of the slope.  The corresponding intercepts on the y-axis are 
also given.  Below these results is the summary of the t test of actual versus predicted slopes.  It 
provides a way of determining whether the relationship between the variables is isometric.  If you 
did not enter a prediction, the test slope is 0 (i.e., the slope of a horizontal line).  The printout will 
also display your raw data.  



Allometry  
 

61

Plotting your Graphs  
            
 You can use the data on the printout to help plot the regression line and 95% confidence limits.  
            
1. Decide how you want to scale your axes.  See the BIOMETRICS manual for hints.   The 

program REGRESSION will display a graph after the Results screen, which should also help 
you scale the axes.  

            
2. Mark the point on your graph with the coordinates (x,y ), i.e., the mean x and y.  
            
3. From this point, move in the x direction an appropriate distance, ∆x.  (What is an appropriate 

distance?  As an example, in Figure 4.3  is 3.1, and the maximum value of x is 5.3; the 
difference between them is 2.2.  So we might take ∆x to be 2.0 because it is a round number 
which "fits" well on the graph.)  Mark the point whose coordinates are ( x + ∆x, ).  

            
4. Move in the y direction a distance ∆y which corresponds to ∆x: 

 ∆y = α × ∆x 

 where α is the slope of the regression line.  If ∆y is positive move upwards, if ∆y is negative 
move downwards, and mark the point ( x + ∆x, y + ∆y).  
 
5. You now have two points through which the regression line passes and can draw the line.  It is 

always more accurate to draw a straight line through three points than through two, and you 
might want to use ( x - ∆x,  y - ∆y). for a third point.  (Select a new ∆x that fits the scale.) 

 
6. To plot the 95% confidence limits, repeat steps (1) to (5) using the slopes of the upper and 

lower 95% confidence limits for α. 
 
7. An alternate method is to use the equation y = mx + b (m = slope); select a value for x to 

determine the value of y. 
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 Figure 4.4.  Printout from REGRESSION program. 
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 APPENDIX B 
 General Formulae for Calculating Areas and Volumes   
 
 

 By convention, unless specifically indicated otherwise, the basic dimensions used by 
morphologists for biological objects are:   

Length (L):  largest measurement   
Width (W):  next largest measurement perpendicular to L   
Height (H):  next largest measurement perpendicular to L and W   

 A typical exception in manufactured objects is a tower or building—the height of which is 
often the greatest measurement.  Also, the height of pyramids and cones is the distance from vertex 
to base. 

 The following table provides formulae for calculating surface area (SA) and volume (VOL) 
for some of the various shapes you will use in this laboratory.  Formulae for pipe, frustum, and 
spheroid are given on the next page.  (Note: a frustum is a cone with the tip removed and its SA and 
VOL can be calculated similarly; however, a simpler technique is to provide one formula.)   
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 APPENDIX C 
 Calculating SA and VOL of a Quadruped   
 
NOTE: It is very important to thoroughly understand this appendix before proceeding with Part 2.  
Some of the text that follows is required in the event that the computer program is unavailable.   
 
Step 1: Drawing Shapes   
 
 First, you must draw the geometric shapes to summarize each of the six body segments.  Keep 
in mind the following:   

a) It should only be necessary to calculate one or two legs; if all legs are similar in shape calculate 
SA and VOL accordingly.  Do not include ears, antlers, or horns. 

b) Some animals have tufts of fur about the head, bushy tails, etc.  Do not include these in your 
calculations.  Why?  Estimate what the head would be like without the tuft of hair, the tail if it 
were not bushy, etc.  Similarly, some animals have their legs bent, bodies in an arched position, 
etc.  Consider these factors when estimating the specific dimensions of a shape and alter 
accordingly (i.e., straighten legs, body, etc.). 

c) For some animals it may be possible to include the neck with the geometric shape selected for 
the head or body; thus you would have only five shapes.  Also, in some animals, the tail may be 
so small that SA and VOL will be insignificant; thus, the tail can be omitted. 

 
Step 2: Recording Measurements   
 
 Once you have traced the geometric shapes, you are ready to take the necessary measurements.  
Study the formulae given in Appendix B to determine which measurements need to be recorded.  
Keep in mind the following:  

a) When calculating SA and VOL for all shapes you will be using radii and not diameters.  Be 
careful and record only radii where they are required.   

b) Remember that you only want to measure SAs of exposed surfaces; for example, for the bison 
you would not want SA of the area between head and neck, neck and body, etc.  (The computer 
program will do this for you!)  This is mentioned here because it may influence which 
measurements you record.  For example, in calculating SA for the bison neck, the areas in 
contact with the head and body are not desired.  Therefore,  the cylinder should be oriented so 
that it is short and wide (not long and narrow).  In this way when SA is calculated (see formula) 
the areas of the two ends (contact areas: 2πr2) can be eliminated.   

 Before actually taking measurements with a metric ruler or calipers, there are two more 
important points to consider.   

c) For consistency, everyone must record their measurements in decimeters (1 dm = 10 cm = 100 
mm).  It is probably easiest to read the measurements from the picture in millimeters, then 
convert to decimeters (1 mm =  0.01 dm), and finally multiply by the scale factor (see below).  
(NOTE: the last two steps can be simplified to one.)  If SA and VOL are calculated by hand, 
convert units to decimeters before squaring or cubing numbers. 

d) Should you calculate SAs and VOLs for the drawing or of the actual animal?  Do you know the 
size of the actual animal?  A scale factor is given on each drawing.  For the bison it is 1:20.7, 
thus each measurement is multiplied by 20.7.  Adjust for the scale factor before SA and VOL 
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are calculated.  (Remember that in many of the formulae some values are squared, and others 
are not.)   

 
Step 3: Calculating SA and VOL   
 
 By now you should have a drawing with no more than six geometric shapes.  For each shape 
you will have recorded the required measurements.  For example, for a frustum you will have two 
radii and a height.  You will need to do the following (parts omitted if computer program is used):   

a) Select the appropriate formulae from Appendix B.  Be sure you know how to use them.  Check 
with your instructor if the mathematics are unclear. 

b) To avoid calculation errors, write down the values as they are computed. 

c) Remember that when calculating SA do not include (if possible) areas which are not exposed.  
In the bison example [π4.042] would not be included in the SA formula for the head.  NOTE: It 
may not be possible to subtract all of the unexposed areas from your calculations (e.g., if the 
head were a sphere and the neck a cylinder).  
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 APPENDIX D 
 Shareware Computer Programs 
 

 The shareware (user-supported) concept of marketing computer software differs from public-
domain software and the standard marketing procedures for commercial software.  The following is 
adapted from Public Domain and Shareware by Dan Marmion (Small Computers in Libraries, 7(11):4–9, 
1987). 
 Commercial software is copyrighted, and may also be copy-protected, so that the user is legally 
constrained from making copies of it.  The cost of commercial software is often expensive in order to 
recoup the costs of development and marketing, pay salaries of employees, and make a profit for the 
parent company. 
 Public-domain software, on the other hand, is neither copyrighted nor copy-protected, nor is it in 
any way commercial software.  The authors of this type of software ask for no monetary compensation 
and simply release their programs into the public domain for anybody to copy and use. 
 Shareware is in between commercial and public-domain software and is based on the principle that 
the user should have a chance to use and evaluate a program before having to pay money for it.  
Shareware is not copy-protected, but it is copyrighted.  A shareware product usually consists of an 
executable file and a documentation file.  Users read the documentation to see how the program works, 
then use it until they are satisfied with the program and will continue to use it, or it is not what they want 
and will cease using it.  If users like and expect to use the product, then they register it with the author by 
sending a fee.  Payment of the registration fee acknowledges support of the shareware concept and 
encourages further development of user-supported software.  Other benefits of registration may include a 
printed manual, telephone support, and notification of newer versions of the program.  Shareware products 
can be obtained on disk for a nominal cost or downloaded from electronic bulletin boards.  
 
Availability of Programs 
 
 The programs (CALCULATOR, CLASSDATA, and REGRESSION) that accompany this exercise  
are being made available as shareware.  The disk(s) containing the executable files and documentation 
files can be obtained by sending a money order for $10.00 US ($12.00 CDN; includes floppy disks, disk 
mailer, handling, and postage; please specify disk size) to: Corey A. Goldman, University of Toronto, 25 
Harbord Street, Toronto, Ontario, Canada M5S 1A1.  Sample class data are also available. 
 
User Support/Registration 
 
 If you find the programs of value and expect to use them, please register them by sending a fee to 
the above address (payable to UNIVERSITY OF TORONTO).  The fee to register all three programs is $75 US ($90 
CDN).  (A registration form is provided in a file on the distribution disk.)  Payment of the registration fee 
(1) ensures notification of newer versions of the programs and limited telephone support, (2) encourages 
further development of user-supported software, and (3) acknowledges support of the shareware concept. 
 
BIOMETRICS Computer Program 
 
 BIOMETRICS is an interactive computer program written by Jeffrey J. Thomason and Corey A. 
Goldman to accompany the 32-page self-study manual used at the University of Toronto entitled 
"BIOMETRICS: an introduction to statistics and the scientific method" (Corey A. Goldman, Editor).  The 
aim of the program is to give students practise solving problems involving the use of numbers and units.  
It is composed of five sections: significant figures, rounding numbers, converting units, scientific notation, 
and magnification.  A copy of the self-study manual and/or computer program can be obtained by writing 
to the above address. 
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 APPENDIX E 
 Problem to be Discussed at the Beginning 
 of the Laboratory 
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 APPENDIX F 
 Values for Acrylic Geometric Shapes Used in Part 1 
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 APPENDIX G 
 Data for Computer Demonstration on CALCULATOR Program 
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 APPENDIX H 
 Sample Output from CALCULATOR Computer Program 
 


