Welcome to

Biology 427

Biomechanics 2004

Tom Daniel, 462/402 Kincaid Hall
clunieli@u.wushinpion,edlu
Stacey Combes, 462/402 Kincaid Hall
scombes@u, washingion.eclu

Course web page:

Lecture 1: An introduction to Biomechanics: Jumping right in. What's the course about?
-How is the course organized?
-What physics basics need I review?
-Jumping right into it: the mechanics of ballistic bodies.
Physical principles underlying biological processes and mechanisms (movement, design, architecture, materials, transport).

Many levels of biological organization:
molecular \longrightarrow cellular \longrightarrow tissue \longrightarrow organism \longrightarrow population

Course Syllabus

COURSE ORGANIZATION

- 3 lectures per week
- Real and CD text books with assigned reading
- Handouts
- Weekly problem sets (physics and math don't get easliy or reasonably memorized)
- Critical reviews of the scientific literautre $\mathbf{5 0 \%}$
- Discussion (review problem sets, panel discussion of papers)
- One course project (in which you develop your own physical analysis of biological problems)
- No exams

Some basics for Biomechanics: A simple problem with a physics review

Rule 1: Equations must be dimensionally correct!

 Mass, Length and Time (we commonly use S.I. units*)
Describe physical quantities

distance	\mathbf{x}	L	m
Velocity	$\mathbf{v}, \mathrm{d} \mathbf{x} / \mathrm{dt}$	$\mathrm{L} \mathrm{T}^{-1}$	$\mathrm{~m} \mathrm{~s}^{-1}$
Acceleration	$\mathbf{a}, \mathrm{dv} / \mathrm{dt}, \mathrm{d}^{2} \mathbf{x} / \mathrm{dt}^{2}$	$\mathrm{~L} \mathrm{~T}^{-2}$	$\mathrm{~m} \mathrm{~s}^{-2}$
Momentum	$\mathbf{M}, \mathrm{m} \mathbf{v}$	$\mathrm{M} \mathrm{L} \mathrm{T}^{-1}$	$\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Force	$\mathrm{F}, \mathrm{d}(\mathrm{mv}) / \mathrm{dt}$	$\mathrm{M} \mathrm{L} \mathrm{T}^{-2}$	Newton, $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
Work	$\mathrm{E}, \mathrm{F} . \mathrm{x}($ if constant F)	$\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}$	Joule, $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
Power	$\mathrm{P}, \mathrm{dE} / \mathrm{dt}$	$\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3}$	Watt, $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$

*Systemme Internationale

Some basics for Biomechanics: A simple problem with a physics review

Some morphology and data

Force? Energy? Power?

Power $=\mathrm{W} /$ time
$=6.3 / 0.025$
252 mW

$1680 \mathrm{~W} / \mathrm{kg}$ muscle

Human on a bicycle ergometer $\sim 40 \mathrm{~W} / \mathrm{kg}$
Maximum single twitch in vertebrate muscle $\sim 400 \mathrm{~W} / \mathrm{kg}$

$$
y=x \sin \alpha \cos \alpha-g\left(x / u_{0} \cos \alpha\right)^{2} / 2
$$

$$
\mathrm{x}=\mathrm{u}_{\mathrm{o}} \cos \alpha \mathrm{t}
$$

$$
y=\int u_{y} d t=u_{0} \sin \alpha t-g t^{2} / 2
$$

Lecture 2: Muscle and molecular mechanics*
-Recap
-Molecular basis of force generation: ATP hydrolysis expands an elastic molecule
-Release of 'elastic strain energy' is manifest as force.
-Three key experiments: old and new.
-New biomechanical analyses.
*Read Chapter 1 "Machinery of Movement" on CD

Course web page:
http://faculty.washington.edu/danielt/BiomechanicsWEB/Bio427.html

What are the molecular determinants of force ?

GAddison Wesley Longman, Im

The Geometry of Muscle

Sarcomere

State Transitions

Experimental Mechanical Evidence?

In vitro motility *

*Dr. Bryant Chase and Kristi Kulin

Optical Tweezers

Photons have momentum (but no mass)
Photon flux \sim momentum flux \sim force

Forward transition rates depend on:
-distance to a binding site
-distortion of a cross-bridge
-Reverse transition rates calculated from equilibrium thermodynamics $(\exp (\Delta G)$ dynamics).

If filaments are not deformable, there is no interaction between cross-bridges and mass-action models can be used

If deformations result from cross-bridge forces, then this is a coupled system -- spatially explicit models are then needed*.
*Huxley, Wakabayashi, Isambert, and many others

Geometry*: Two interacting compliant filaments

Thick filament
*About 20 cross-bridges and 30 binding sites in each half sarcomere.

How are forces distributed?

Recall Hooke's Law

060

For the $i^{\text {th }}$ bound cross-bridge

$$
\begin{gathered}
k_{m}\left(y_{i+1}-\mathbf{y}_{i}-y_{0}\right)+k_{x b}\left(x_{j}-y_{i}-x_{b o}\right)-k_{m}\left(y_{i}-y_{i-1}-y_{0}\right)=0 \\
k_{a}\left(x_{j+1}-x_{j}-x_{0}\right)-k_{x b}\left(\left(x_{j}-y_{i}-x_{b 0}\right)-k_{a}\left(x_{i}-x_{i-1}-x_{0}\right)=0\right.
\end{gathered}
$$

Computational Approach: Monte-Carlo Simulation

All cross-bridges initially unbound (state 1)

MECHANICAL TUNING EMERGES

"EFFICIENCY" CAN BE TUNED TOO

Lecture 3: Muscle and physiological mechanics* -Recap
-Isometric versus isotonic experiments
-Relations between force and time, length and velocity
-The work-loop method: physiologically relevant mechanics.
*Read Chapter 1 "Machinery of Movement" on CD

What are the determinants of force ?

Temporal characteristics of activation

What are the determinants of force ?

Length of muscle

Gordon, Huxley and Julian 1966

Reminders about Length Tension curves

But where do animals normally operate? Length (um) But where do animals normaly operate. Who cares?
What are the mechanical consequences of dynamic length changes over different parts of this business?

Reminders about Length Tension curves

A region with hidden binding sites.
Faster force declines.
e.g. hearts;
1.0 N
F

Length - Tension relationships of skeletal and cardiac muscle differ considerably

Regulation of Cardiac Output

Frank-Starling Law:

Stroke volume \propto End-diastolic volume
(increased cardiac output due to increased ventricular filling)

Frank-Starling Law: Mechanical Consequences

What are the determinants of force ?

Speed of muscle shortening

$$
\begin{aligned}
& \text { Hill's equation } \\
& T=\frac{b T_{o}-a v}{v+b} \\
& b / v_{\max } \approx a / T_{o} \approx 1 / 4
\end{aligned}
$$

$$
\frac{T}{T}=\frac{v_{\max }-v}{4 v+v_{\max / 4}}
$$

Force $=f(t, l, v)$

Muscle Function: Generate mechanical power

Work $=\mathrm{F} \times \Delta \mathrm{L} \quad$ (Joules)

Power = Work x Frequency
(Joules/s = Watts)

Workloop Methods

Lecture 4: Terrestrial Locomotion I Simple Analyses of Ballistic Movement.

- Recap: projectiles and muscle

Current approaches for analyzing terrestrial locomotion.
Gaits and patterns of limb motion
Ballistic walking and the inverted pendulum

Force $=f(t, l, v)$

Isometric and

(sarcomere/s)
isotonic conditions are unlikely in physiologically relevant situations.

Muscle Function: Generate mechanical power

Work $=\mathrm{F} \times \Delta \mathbf{L}$

(Joules)

Power = Work x Frequency
(Joules/s = Watts)

Workloop Methods

What are the determinants of force ?

> Run the "work loop" program on page 21 in the chapter on muscle in the CD

$M^{2} \mathbf{x} / \mathrm{dt}^{2}=$ F(x,dx/dt,t)

Cost of transport declines with body size

Log Body Mass (kg)

Movement Biomechanics

Patterns in time and space (Kinematics)
Forces
Dynamics (control and stability)
Energy

- stride length: distance between footfalls of the same foot
- stride frequency: number of footfalls per time
-duty factor: fraction of stride time that a foot is on the ground (human walking $=0.5$ -0.6 , running $=0.35$). Gaits with duty factors less than 0.5 imply airborne phases.
- relative phase: time a foot is set down as a fraction of the stride time.

Simple Quantifiers of Movement on Land

$$
\mathbf{V}^{2}<\mathbf{g L}
$$

Simple Quantifiers of Movement on Land

Modifiers of the radius of curvature

Lumbar flexion
Pelvic rotation
Pelvic tilt

Biology 427 Biomechanics

Lecture 5. Terrestrial locomotion II: mechanical analysis of gaits and jumpiness.

- Recap: gaits and ballistic walking
- When the Froude Number ($V^{2} / g L$) is greater than 1, simple ballistic walking is no longer possible.
- The jumper model accounts for an airborne phase of movement.
- Calculating optimal gaits for energy expenditure

Simple Quantifiers of Movement on Land "Ballistic Waking"

$\mathbf{V}^{2}<\mathbf{g L}$
$\mathrm{Fr}=\mathrm{V}^{2} / \mathrm{gL}$

The jumper: for speeds greater than $\mathrm{Fr}=1$, gait must change with an airborne phase
gait: jumpiness $=j=b / a$

Assume

 constant V no air resistance no skidding

Goal: compute the power (rate of energy expenditure) as a function of size (M, m) and gait $(j=b / a)$

Goal: compute the power (rate of energy expenditure) as a function of size (M, m) and gait $(j=b / a)$

Goal: compute the power (rate of energy expenditure) as a function of size (M, m) and gait $(j=b / a)$

Goal: compute the power (rate of energy expenditure) as a function of size (M, m) and gait $(j=b / a)$

Power $=(1+\gamma)$ M g $^{\mathbf{2}} \mathrm{b} / 8 \mathrm{~V}+\mathrm{m} \mathrm{V}^{\mathbf{3}} / \mathbf{2 (a + b)}$
$=(\mathbf{1}+\gamma) \mathbf{M} \mathbf{g}^{\mathbf{2}} \mathbf{a} \mathbf{j} / \mathbf{8 V}+\mathrm{mV}^{\mathbf{3}} / \mathbf{2 a}(\mathbf{1}+\mathbf{j})$
How does Power vary with foot mass (m)? body mass (M)? body velocity (V)? leg length (~a)? jumpiness (j)?

Power $=(1+\gamma) \mathbf{M g}^{\mathbf{2}} \mathrm{b} / 8 \mathrm{~V}+\mathrm{m} \mathrm{V}^{\mathbf{3}} / \mathbf{2 (a + b)}$
 $=(\mathbf{1}+\gamma) \mathbf{M} \mathbf{g}^{\mathbf{2}} \mathbf{a} \mathbf{j} / \mathbf{8 V}+\mathrm{m} \mathrm{V}^{\mathbf{3}} / \mathbf{2 a}(\mathbf{1}+\mathbf{j})$

$d P / d j=0$ defines a maximum ${ }_{P}$

Biology 427 Biomechanics
 Lecture 6. Everyday stress and strain and the stiffness of biological materials I: terms, definitions and other basics

-Recap optimization of gaits for minimum power out put and cost of transport.
-Loads and deformations for basic stress and strain
-Stiffness: a measure of how materials respond to loads
-Strength

$$
\begin{aligned}
\text { Power } & =(1+\gamma) M \mathbf{g}^{2} \mathbf{b} / 8 \mathrm{~V}+\mathrm{m}^{3} / 2(\mathbf{a}+\mathbf{b}) \\
& =(1+\gamma) \mathrm{Mg}^{2} \mathbf{a} \mathbf{j} / 8 \mathrm{~V}+\mathrm{m} \mathbf{V}^{3} / 2 a(1+\mathbf{j})
\end{aligned}
$$

Comes from a calculation

 for the work to launch and land and the work to move the feet$d P / d j=0$ defines a maximum (if $d^{2} P / d j^{2}<0$)

Types of loads and deformations

uniaxial loads
biaxial loads triaxial loads

Material vs. structural properties

Need to eliminate the effect of size and shape to define material properties.

stress $(\sigma)=$ Force/Area
$\sigma=F / A$
$P a=N / m^{2}$
$\operatorname{strain}(\varepsilon)=\left(L-L_{o}\right) / L_{o}$

Material vs. structural properties

stress $(\sigma)=$ Force/Area

$\varepsilon=\Delta L / L_{o}$

Young's modulus
(E) measures the stiffness of a material
$E=\sigma / \varepsilon$
stress (σ): the distribution of force over an area strain (ε): a dimensionless measure of length change stiffness (E): the change in stress required for a change in strain (the slope of a stress-strain

Curve)	
Material \quad Youngs	Modulus (Mpa)
Locust cuticle	0.2
Rubber	7
Human cartilage	$\mathbf{2 4}$
Human tendon	$\mathbf{6 0 0}$
Cheap plastic	$\mathbf{1 , 4 0 0}$
Plywood	$\mathbf{1 4 , 0 0 0}$
Human bone	$\mathbf{2 1 , 0 0 0}$
Glass	$\mathbf{7 0 , 0 0 0}$
Brass	$\mathbf{1 2 0 , 0 0 0}$
Iron	$\mathbf{2 1 0 , 0 0 0}$
Diamond	$\mathbf{1 , 2 0 0 , 0 0 0}$

stress (σ): the distribution of force over an area strain (ε): a dimensionless measure of length change stiffness (E): the change in stress required for a change in strain (the slope of a stress-strain

stress (σ): the distribution of force over an area strain (ε): a dimensionless measure of length change stiffness (E): the change in stress required for a change in strain (the slope of a stress-strain curve)
strength ($\sigma_{\text {max }}$): the stress at failure

stress (σ): the distribution of force over an area strain (ε): a dimensionless measure of length change stiffness (E): the change in stress required for a change in strain (the slope of a stress-strain curve)
strength ($\sigma_{\text {max }}$): the stress at failure

material strength (MPa) arterial wall 2
human cartilage 3
cement 4
cheap aluminum 70
glass
100
human tendon 100
human bone 110
human hair 200
spider silk 350
titanium $\quad 1000$
steel wire $\quad \mathbf{3 0 0 0}$

Biology 427
 Lecture 7. Strength and toughness of biological materials

Recap stress, strain, stiffness and strength of biomaterials: measures of material properties
Strength revisited and the limits to the size of terrestrial vertebrates

Energy relations in biological materials: toughness and resilience
Plastic deformations: an introduction to time-dependent material properties.
stress (σ): the distribution of force over an area strain (ε): a dimensionless measure of length change stiffness (E): the change in stress required for a change in strain (the slope of a stress-strain curve): a material property

Material Youngs Modulus (Mpa)	
Locust cuticle	0.2
Rubber	7
Human cartilage	$\mathbf{2 4}$
Human tendon	$\mathbf{6 0 0}$
Cheap plastic	$\mathbf{1 , 4 0 0}$
Plywood	$\mathbf{1 4 , 0 0 0}$
Human bone	$\mathbf{2 1 , 0 0 0}$
Glass	$\mathbf{7 0 , 0 0 0}$
Brass	$\mathbf{1 2 0 , 0 0 0}$
Iron	$\mathbf{2 1 0 , 0 0 0}$
Diamond	$\mathbf{1 , 2 0 0 , 0 0 0}$

stress (σ): the distribution of force over an area strain (ε): a dimensionless measure of length change stiffness (E): the change in stress required for a change in strain (the slope of a stress-strain curve) a material property
strength ($\sigma_{\text {max }}$): the stress at failure

Baluchitherium: about 30 Tons Could the foot bones support its weight?

$$
\begin{aligned}
\sigma_{\max } & =100 \mathrm{MPa} \\
& =F_{\max } / \text { Area } \\
F_{\max } & =10^{8 *} \text { Area } \\
& =15110^{4} \mathrm{~N} \\
& =15110^{3} \mathrm{Kg} \\
& =151 \mathrm{~T}
\end{aligned}
$$

stress (σ): the distribution of force over an area strain (ε): a dimensionless measure of length change stiffness (E): the change in stress required for a change in strain (the slope of a stress-strain curve)
strength ($\sigma_{\text {max }}$): the stress at failure

material strength (MPa) arterial wall 2
human cartilage 3
cement 4
cheap aluminum 70
glass
100
human tendon 100
human bone 110
human hair 200
spider silk 350
titanium $\quad 1000$
steel wire $\quad \mathbf{3 0 0 0}$

Energy Basics for Materials

The energy imparted is the mechanical strain

 energy$$
\mathrm{U}=\int \sigma \mathrm{d} \varepsilon \quad \frac{\mathrm{~W}}{\mathrm{vol}}=\int \frac{\mathrm{Fdx}}{\mathrm{AL}}
$$

For Hookean materials

$$
\sigma=\mathrm{E} \varepsilon
$$

$\mathrm{U}=\int \mathrm{E} \varepsilon \mathrm{d} \varepsilon \quad \mathrm{U}=\int \sigma \mathrm{d} \sigma / \mathrm{E}$

The energy imparted is the mechanical strain energy that can be returned or be so great as to break the material

$$
\mathrm{U}=\int \sigma \mathrm{d} \varepsilon
$$

The energy imparted is the mechanical strain energy that can be returned or be so great as to break the material

$$
\mathrm{U}=\int \sigma \mathrm{d} \varepsilon
$$

The energy imparted is the mechanical strain energy that can be returned or be so great as to break the material

$$
\mathrm{U}=\int \sigma \mathrm{d} \varepsilon
$$

The story of the pregnant (gravid) locust -locusts are migratory
-light weight important in flight
$\mathrm{E}=10^{5} \mathrm{MPa}$ -fertilized eggs in dehydrated state
-live in very arid climates
-trick: bury the eggs ~ 8 cm beneath surface

$$
\begin{aligned}
& \mathrm{U}=\int \mathrm{E} \varepsilon \mathrm{~d} \varepsilon \\
&=\mathrm{E} \varepsilon^{2} / 2 \\
&=10^{11} 9 / 2 \\
& \sim 510^{11} \mathrm{~J} / \mathrm{m}^{3} \\
&=510^{8} \mathrm{~J} / \mathrm{kg} \\
& \text { with } 1 \mathrm{~g} \text { of abdomen } \\
&->510^{5} \mathrm{~J} \\
& \mathrm{M}=0.005 \mathrm{~kg} \\
& \mathrm{PE}=\mathrm{Mg} \mathrm{~h} \\
& \mathrm{~h}=10^{7} \mathrm{~m}
\end{aligned}
$$

The energy imparted is the mechanical strain energy that can be returned or be so great as to break the material or be lost as a permanent deformation (plastic deformation)

Biology 427 Biomechanics
 Lecture 8. Visco-elasticity: time-dependent properites of biological materials

-Recap of basic elasticity
-Differentiating fluids (viscous) from solid (elastic) behaviors

- Experimental results for some biomaterials
-Elementary descriptions of visco-elastic material properties.
-Comments about term project 1

Recap Material Properties

stiffness $\quad \mathrm{d} \sigma / \mathrm{d} \varepsilon$
strength $\quad\left(\sigma_{\max }\right)$
toughness $\int \sigma \mathrm{d} \varepsilon$

time ${ }^{\varepsilon}$ dependent

ε
plastic

Tendon, muscle, cuticle, cartilage, mucus, hair, mesoglea, skin, all show timedependent properties. They are, therefore, vicso-elastic.

Key: how do solids and fluids respond to a shear force?

$$
\begin{aligned}
& \mathrm{F} \sim \Delta \mathrm{~L} \\
& \sigma \sim \varepsilon \\
& \sigma=\mathrm{E} \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F} \sim \Delta \mathrm{~L} / \Delta \mathrm{t} \sim \mathrm{dL} / \mathrm{dt} \\
& \sigma \sim \mathrm{~d} \varepsilon / \mathrm{dt} \\
& \sigma=\mu \mathrm{d} \varepsilon / \mathrm{dt} \\
& \underset{\text { dashpot }}{=}
\end{aligned}
$$

Creep characteristics of тисиs and cartilage

How does the stiffness vary in time?

A stress relaxtion test on the ACL

How does the stiffness vary in time?

Mesoglea (a protein polysaccharide)

wave forces: seconds postural forces: minutes tidal changes : hours

The Master Curve

We often want to develop predictive models to how any material (structure) responds to a load.

Creep characteristics of тисиs

and cartilage

Creep characteristics of

Biology 427 Biomechanics
 Lecture 9. Models of the visco-elastic behavior of biological materials.

-Recap visco-elasticity and time-dependent properties
-Simple theoretical models of visco-elastic materials
-Complex models applied to the cellular mechanism of sensory transduction. A tale of two sensors.

Time dependent properties of

How does the stiffness vary in time?

The Master Curve

We often want to develop predictive models to how any material (structure) responds to a load.

Creep characteristics of

Stress relaxtion characteristics

$\sigma_{\mathrm{s}}=\sigma_{\mathrm{d}}=\sigma_{\text {total }}$
$\varepsilon_{s}+\varepsilon_{d}=\varepsilon_{\text {total }}$
$\sigma_{\text {total }}=\mathbf{E} \varepsilon\left(1-\mathbf{e}^{\mathrm{Et} / \mu}\right)$
and cantilage
σ
ε

$$
\begin{aligned}
& \sigma_{s}+\sigma_{d}=\sigma_{\text {total }} \\
& \varepsilon_{\mathrm{s}}=\varepsilon_{\mathrm{d}}=\varepsilon_{\text {total }}
\end{aligned}
$$

Stress relaxation in tendon, ligament, chitin

We need a more general model

Stress relaxation in tendon, ligament, chitin

Standard linear solid

$$
\begin{aligned}
& \sigma_{1}=\mathbf{E}_{1} \varepsilon\left(1-\mathbf{e}^{-E_{1} t / \mu}\right) \\
& \sigma_{2}=\mathbf{E}_{2} \varepsilon \\
& \sigma=\mathbf{E}_{2} \varepsilon+\mathbf{E}_{1} \varepsilon\left(\mathbf{1}-\mathbf{e}^{-\mathrm{E} 1 \mathrm{t} / \mu}\right) \\
& \quad+\mathrm{E}_{3} \varepsilon\left(1-\mathrm{e}^{\mathrm{E} 3 \mathrm{t} / \mu}\right)
\end{aligned}
$$

Mechanoreception: detecting motions and forces

Stretch activated channels underlie hearing, balance, vibration sensing in diverse animals.

auditory hair cells have stretch activated channels.

M. Frye UW \& UCB

Sinwave captures in vivo wing hinge deformation

Mechanical model predicts tension, but not SR firing dynamics

Biology 427 Biomechanics
 Lecture 10. Shape and stress: architecture in biology.

-Recap material properties

- Cross-sectional shape: The second moment of area (I)
-The flexural stiffness of a structure (EI)
-Buckling and twisting
-Failure and safety factors: many ways to break up.

Project proposals: due Friday, February 6

Proposals should be no more than 3 double-spaced pages, and should address the following:

- What is your question?
- Why is your question important/interesting?
- What is known about your question? (give background from literature*/web searches)
- How will you develop a quantitative analysis of your problem? (you do not need to provide any equations in the proposal, but should explain the quantitative approach/steps you will take)
-*Read "Advice for preparing projects" on the webpage!

Stress relaxation in tendon, ligament, chitin

Standard linear solid

$$
\begin{aligned}
& \sigma_{1}=\mathrm{E}_{1} \varepsilon\left(1-\mathbf{e}^{\mathrm{E} 1 \mathrm{t} / \mu}\right) \\
& \sigma_{2}=\mathrm{E}_{2} \varepsilon \\
& \sigma=\mathrm{E}_{2} \varepsilon+\mathrm{E}_{1} \varepsilon\left(1-\mathbf{e}^{\mathrm{E} 1 \mathrm{t} / \mu}\right) \\
& \quad+\mathrm{E}_{\mathrm{n}} \varepsilon\left(\mathbb{1}=\mathrm{e}^{\mathrm{E} 3 \mathrm{t} / \mu)}\right.
\end{aligned}
$$

In tension, the behavior of a structure depends only on material properties and cross-sectional area (not shape!):

$$
\begin{aligned}
& \sigma=E \varepsilon=E \Delta L / L \\
& \Delta L=\sigma L / E=F L / A E
\end{aligned}
$$

*Responses to other types of loads depend on shape

Compression
--> can lead to buckling

Torsion

How can we quantify the shape of a structure?

Beam theory treats structures like simple beams with a cross-sectional shape and a length L

Cross-sectional shape: second moment of area

Stress during bending (tensile or compressive) rises with distance from the neutral axis
$y=$ distance from neutral axis
Cross-section

Cross-sectional shape: second moment of area

$y=$ distance from neutral axis

Neutral axis
small piece of area at a certain distance y from the neutral axis
$\sigma \propto \kappa y$
where \mathcal{K} is a constant

Find force and moment acting on a small piece: $(\mathrm{F}=\sigma \mathrm{A})$ Force on $\delta A=\sigma_{y} \delta A$

Moment about neutral axis: (M=Fy) $\delta M=y\left(\sigma_{y} \delta A\right)$

Find the total moment about the neutral axis:
$\mathbf{M}=\int \sigma y d A \quad(\sigma \propto \kappa y)$
$M=\int \kappa y^{2} d A=\kappa \int y^{2} d A$
$M=\sigma / y \int y^{2} d A=I \sigma / y$
I is the second moment of area
$\mathbf{I}=\int \mathrm{y}^{2} \mathbf{d A}$

Second moment of area for some beam shapes

Shape

Area
I

Predicting overall bending behavior of a structure: EI -- Flexural stiffness

$$
\begin{aligned}
& \xrightarrow[\text { compression }]{\text { tension }} \\
& \mathbf{M}=\sigma / \mathbf{y} \int \mathrm{y}^{2} \mathrm{dA}=\mathrm{I} \sigma / \mathbf{y} \\
& \mathbf{M}=\mathbf{F} \mathbf{x} \\
& \mathrm{F}_{\mathrm{x}}=\mathrm{I} \sigma / \mathrm{y} \\
& \sigma=F \times y / I \\
& \sigma=\mathrm{E} \varepsilon \quad \varepsilon=\mathrm{F} \times \mathrm{y} /(\mathrm{E} \mathrm{I})
\end{aligned}
$$

EI describes the overall behavior of the beam due to BOTH material and structural properties

Predicting overall bending behavior of a

 structure: EI -- Flexural stiffness

Point load F at end of beam Moment $\mathbf{M}=\boldsymbol{F x}$
Maximum moment $=F L$
Deflection of beam at point x
$y=F\left(x^{3}-3 L^{2} x+2 L^{3}\right) /(6 E I)$
Maximum deflection (at tip):
$y_{\text {max }}=F L^{3} /(3 E I)$

Uniformly distributed load $f=F L$ Moment $M=$ Fx$^{2} / 3 L$
Maximum moment $=$ FL/2
Deflection of beam at point x $y=F\left(x^{4}-4 L^{3} x+3 L^{4}\right) /(24 E I L)$
Maximum deflection (at tip): $y_{\text {max }}=F L^{3} /(8 E I)$

How do beams repond to compression?

Compression

--> can lead
to buckling

Size and shape matter in compression too!

Compressive failure ($\sigma_{\text {max }}$)

Local buckling

$$
\sigma_{L}=k E \quad t / D \quad(k \sim 0.7)
$$

* depends on E , wall thickness and diameter

Euler buckling $\mathrm{F}_{\mathrm{E}}=\mathbf{n} \boldsymbol{\pi}^{\mathbf{2}} \mathrm{EI} / \mathrm{L}^{\mathbf{2}}$

* depends on EI and length

How do beams repond to torsion?

Torsion involves tensile forces (outside) and

 compressive forces (inside), as well as shear forces

Torsion

Torsional stiffness (like flexural stiffness) depends

 on both material properties (G) and structural properties (J):$$
\theta=F r L / G J
$$

$\mathrm{J}=$ second polar moment of area
$\mathrm{J}=\pi / 2\left(\mathrm{r}_{\mathrm{o}}{ }^{4}-\mathrm{r}_{\mathrm{i}}{ }^{4}\right)$
where θ is angle of twist, F is tangential applied force, and r is radius

A huge collection of material and structural properties stiffness (E), strength ($\sigma_{\text {max }}$), flexural stiffness (EI), torsional stiffness (GJ), critical buckling force (F_{E})...
To what extent does the design of biological materials and structures help them withstand various forces?
Safety factor *: $S F=\sigma_{\max } / \sigma_{\text {expected }}$
(for tensile/ compressive failure)

	Bones		Tendon
	Tensile	Compressive	
$\underline{\sigma}_{\text {max }}{ }^{\text {Strength (Mpa) }}$	$\underline{172}$	$\underline{284}$	$\underline{84}$
$\boldsymbol{\sigma}_{\boldsymbol{e x}}$ Dog jumping	$68-80(2-3)$	$100(2.8)$	$84(1.0)$
$\boldsymbol{\sigma}_{\boldsymbol{e x}}$ Kangaroo hopping	$60(3)$	$90(3.2)$	$40-80(1-2)$
$\boldsymbol{\sigma}_{\boldsymbol{e x}}$ Elephant running	$45-69(2.5-4)$	$57-85(3.3-5)$	
$\boldsymbol{\sigma}_{\boldsymbol{e x}}$ Man weight lifting		$(1-1.7)$	
$\boldsymbol{\sigma}_{\boldsymbol{e x}}$ Goose flying		$50(6)$	

*Alexander, R.McN. 1981. Sci. Prog. Oxf. 67:109-120

What about safety factors for other types of loading?

Structure

Cuttlefish, buoyancy chambers Squid, shell (pen)
Spider, dragline
Reptilian hindlimbs
Reptilian hindlimbs
Mammalian bones (general)
Horse, leg bones in galloping
Ostrich, leg bones in running
Bird wing bones
Bat (microchiropteran) wing bones
Bat (megachiropteran) wing bones
Pigeon (wing) humerus
Pigeon (wing) humerus
Pigeon wing feather shaft
Tree trunks
Stems, annual plants
Garlic, grown in windy field
Garlic, grown in greenhouse

Load/Failure Mode

pressure	lower SF in
bending	predictable
tension	environments?

bending
torsion
bending SF differs for
bending different types
bending
bending
bending
bending bending
torsion
bending
critical buckling critical buckling critical buckling
critical buckling

Factor

1.3-1.4
1.3-1.4
1.5
5.5-10.8
3.9-5.4

2-6
4.8
2.5
2.2
1.4
3.91.9

6-12
Higher SF in longerlived organisms?

Higher SF when

 exposed to a high stress environment? 1.03about 4 about 2
1.78

But ... there is variation in real biological materials and loads may be unpredictable (they may vary from the expected values).

probability of breakage:
0.0004/year human humerus
0.0006/year human femur
0.02/life either humerus/femur
0.07/life viverids humerus/femur
0.4/life gibbons humerus/femur
$0.5 /$ life red deer antlers
$0.5 /$ life spider webs

- distribution of
stresses experienced
- distribution of
strengths (in a structure or population)

Alexander suggested minimizing

$$
\Phi(\mathrm{n})=\mathrm{P}(\mathrm{n}) * \mathrm{~F}+\mathrm{G}(\mathrm{n})+\mathrm{U}(\mathrm{n})
$$

$\mathrm{P}(\mathrm{n}) * \mathrm{~F}=$ probability of failure $* \operatorname{cost}$ of failure
$G(n)=$ cost of producing structure
$U(n)=$ cost of using structure

Biology 427 Biomechanics
 Lecture 11. More on shape and stress: architecture in biology and the design of biological structures

- Recap flexural stiffness, I, and beam examples
- Stress distributions in hip bones and tree limbs
- The design of mammalian long bones
- Design for selective failure: ripping fingernails

Talk to Tom or Stacey about your project!

Buckling diameter, torsion measurements......

Local buckling $\quad \sigma_{L}=k E t / D \quad(k \sim 0.7)$

* depends on E , wall thickness and diameter

$$
D=\text { outer diameter }
$$

Torsion $\theta=\mathbf{F r} \mathbf{L} / \mathbf{G} \mathbf{J}$
where θ is angle of twist, F is tangential applied force, and r is radius

Predicting overall bending behavior of a structure: EI -- Flexural stiffness

Are any of these equations timedependent?

Yes!

- E can vary with time (viscoelastic) or force

$$
\mathbf{M}=\mathbf{F} \mathbf{x}
$$ (non-linear)

$$
\mathbf{M}=\sigma / \mathbf{y} \int y^{2} d \mathrm{dA}=\mathrm{I} \sigma / \mathbf{y}
$$

$$
F x=I \sigma / y
$$

- I can also change

$$
\sigma=F \times y / \mathbf{I}
$$ with time if structure

$$
\sigma=\mathrm{E} \varepsilon \quad \varepsilon=\mathrm{F} \mathbf{x} \mathbf{y} /(\mathrm{E} \mathrm{I})
$$ deforms (squishes)

Second moment of area for some beam shapes

Shape

Area
I
$w h$
πR^{2}
$\pi R^{4} / 4$
$\pi a b$
$\pi\left(R_{o}{ }^{2}-R_{i}^{2}\right) \quad \pi\left(R_{o}^{4}-R_{i}^{4}\right) / 4$
$b h / 2$
$b h^{3} / 36$
see class web page

Predicting overall bending behavior of a

 structure: EI -- Flexural stiffness

Point load F at end of beam Moment $\mathbf{M}=\boldsymbol{F x}$
Maximum moment $=F L$
Deflection of beam at point x
$y=F\left(x^{3}-3 L^{2} x+2 L^{3}\right) /(6 E I)$
Maximum deflection (at tip):
$y_{\text {max }}=F L^{3} /(3 E I)$

Uniformly distributed load $f=F L$ Moment $M=$ Fx$^{2} / 3 L$
Maximum moment $=$ FL/2
Deflection of beam at point x $y=F\left(x^{4}-4 L^{3} x+3 L^{4}\right) /(24 E I L)$
Maximum deflection (at tip): $y_{\text {max }}=F L^{3} /(8 E I)$

Stress distributions in biological beams: hip

Bending will cause tension and compression, but most bones are stronger in compression

Where do you think the tensile stress is greatest?

Where is the most likely zone for failure?

Stress distributions in biological beams: tree branches

Tree branches support their own weight, plus the weight of leaves, fruit, etc.

How does the design of branches affect the distribution of bending stresses?

Mammalian long bone design: How do structural features affect stress on bones?

But this assumes that we can use as much material as we want......

$$
\text { minimize: } \Phi(\mathbf{n})=\mathbf{P}(\mathbf{n}) * \mathbf{F}+\mathbf{G}(\mathbf{n})+\mathbf{U}(\mathbf{n})
$$

thick, big bones ($\mathrm{k}->0$)

$\sigma=\mathrm{Fx} \mathbf{y} / \mathrm{I}$

$\mathrm{I}=\pi \mathrm{R}^{4}\left(1-\mathrm{k}^{4}\right) / 4$
$\mathrm{k}=\mathrm{r} / \mathbf{R}$
$\mathrm{V}=\pi \mathrm{R}^{2} \mathrm{~L}-\pi(\mathrm{kR})^{\mathbf{2}} \mathrm{L}=\boldsymbol{\pi} \mathbf{R}^{\mathbf{2}} \mathrm{L}\left(\mathbf{1}-\mathrm{k}^{2}\right)$ $\mathbf{R}^{2}=\mathbf{V} /\left(\boldsymbol{\pi} \mathbf{L}\left(1-k^{2}\right)\right)$
$\mathrm{R}^{4}=\mathrm{V}^{2} /\left(\pi \mathrm{L}\left(1-\mathrm{k}^{2}\right)\right)^{2}$
$\sigma \sim 1 / I \sim 1 / R^{4}\left(1-k^{4}\right) \leftarrow{ }_{\text {stresses }}^{\text {m }}$
$\sigma \sim 1 /\left(\mathrm{V}^{2} /\left(\pi \mathrm{L}\left(1-\mathrm{k}^{2}\right)\right)^{2}\right)\left(1-\mathrm{k}^{4}\right)$
$\left.\sigma \sim\left(1-k^{2}\right)^{2 /(1-k}\right)$
For a given volume of bone, how best might we distribute it?

For a given volume of bone, how best might we distribute it?

Values for k in terrestrial mammals

$\underline{\text { Bone }}$	$\underline{\text { Hare }}$	$\underline{\text { Fox }}$	$\underline{\text { Lion }}$		Camel Buffalo	
$\underline{\text { femur }}$	$\mathbf{0 . 5 7}$	$\underline{\mathbf{0 . 6 3}}$	$\mathbf{0 . 5 6}$	$\mathbf{0 . 6 2}$	$\underline{\mathbf{0 . 5 4}}$	
humerus	$\mathbf{0 . 5 5}$	$\mathbf{0 . 5 9}$	$\mathbf{0 . 5 7}$	$\mathbf{0 . 6 6}$	$\mathbf{0 . 5 1}$	0.92

What is the best design for minimum weight?
 cost of probability of failure \downarrow | cost to |
| :---: |
| use |

Compute the mass per minimize: unit length of bone

```
\Phi(n)=P(n)*F +G(n) + U(n)
thick, big bones ( \(\mathrm{k}->0\) )
\[
\sigma=F x y / I
\]
\[
k=r / \mathbf{R}
\]

We will set the limiting condition of the size of bone that just avoids breaking
\[
\begin{aligned}
\sigma_{\max } & =F \times y / I & & \sigma_{\max }=M \mathrm{M} /\left(\pi \mathrm{R}^{4}\left(1-\mathrm{k}^{4}\right) / 4\right) \\
& =M y / I=M \mathrm{R} / \mathrm{I} & & \\
& =\pi R^{4}\left(1-\mathrm{k}^{4}\right) / 4 & & R=\left\{4 \mathrm{M} /\left(\pi \sigma_{\max }\left(1-\mathrm{k}^{4}\right)\right\}^{1 / 3}\right.
\end{aligned}
\]

This is the radius needed for a bone to just avoid breaking under a given bending load

\section*{What is the best design for minimum weight?}
 Compute the mass per minimize: \(\Phi(\mathbf{n})=\mathbf{P ( n )} * \mathrm{~F}+\mathbf{G}(\mathbf{n})+\mathrm{U}(\mathbf{n})\) unit length of bone

\(k=r / R\)
\(R=\left\{4 \mathrm{M} /\left(\pi \sigma_{\max }\left(1-k^{4}\right)\right\}^{1 / 3}\right.\)
\[
\begin{aligned}
& \text { mass }=\text { area*length*density }(m=A L \rho) \\
& m_{\text {bone }} / L=A \rho_{\text {bone }}=\rho_{\text {bone }} \pi R^{2}\left(1-k^{2}\right) \\
& \quad=\rho_{\text {bone }} \pi\left\{4 M /\left(\pi \sigma_{\mathrm{B}}\left(1-k^{4}\right)\right\}^{2 / 3}\left(1-k^{2}\right)\right.
\end{aligned}
\]

This is the mass per unit
length of bone that will just avoid breaking

\section*{What is the best design for minimum weight?}
cost of
probability
of failure
\(\downarrow\) \begin{tabular}{c} 
cost to \\
produce \\
\(\downarrow\)
\end{tabular} \begin{tabular}{c} 
cost to \\
use
\end{tabular}

Compute the mass per minimize: \(\Phi \underbrace{\Phi(\mathbf{n})=\mathbf{P ( n )}{ }^{(\mathbf{F}+\mathbf{G}(\mathbf{n})+\mathrm{U}(\mathbf{n})}} \begin{aligned} & \text { unit length of bone }\end{aligned}\)

\[
\sigma=F \times y / I
\]
\[
\underbrace{\text { thick, big bones }(\mathrm{k}->0)}_{\text {thin, wide bones }(\mathrm{k}->1)}
\]
\[
\mathbf{k}=\mathbf{r} / \mathbf{R} \quad \mathbf{R}=\left\{4 \mathrm{M} /\left(\pi \sigma_{\max }\left(1-\mathrm{k}^{4}\right)\right\}^{1 / 3}\right.
\]


\section*{But, bone is not an empty tube.....the marrow inside has weight too}
\(\rho_{\text {marrow }}=\rho_{\text {bone }} / 2\)
minimize:

\(\sigma=\mathrm{Fx} \mathbf{y} / \mathrm{I}\)
\(\underbrace{\text { thick, big bones }(\mathrm{k}->0)}_{\text {thin, wide bones }(k->1)}\)
\(k=r / R\)
\(R=\left\{4 \mathrm{M} /\left(\pi \sigma_{\max }\left(1-k^{4}\right)\right\}^{1 / 3}\right.\)
\(\mathrm{m}_{\text {bone }} / \mathrm{L}=\rho_{\text {bone }} \pi \mathbf{R}^{\mathbf{2}\left(1-k^{2}\right)}\)
\(m_{\text {marrow }} / L=\rho_{\text {marrow }} \pi r^{2}=\rho_{\text {bone }} \pi R^{2} k^{2} / 2\)
\(\mathbf{m}_{\text {marrow }} / \mathbf{L}\)
\(=\rho_{\text {bone }} \pi\left\{4 \mathrm{M} /\left(\pi \sigma_{B}\left(1-k^{4}\right)\right\}^{2 / 3} \mathbf{k}^{2 / 2}\right.\)
This is the mass of marrow per unit length


\section*{Compute the TOTAL mass per unit length of bone} that just avoids breaking.....


Values of \(k\) for terrestrial long bones are close to our predictions
minimize: \(\boldsymbol{\Phi ( n )}=\mathbf{P}(\mathbf{n}) * \mathbf{F}+\mathbf{G}(\mathbf{n})+\mathbf{U}(\mathbf{n})\)


\section*{What about swan humerus?}

Values for \(k\) in terrestrial mammals
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Bone & Hare & Fox & Lion & \multicolumn{2}{|l|}{Camel Buffalo} & Swan \\
\hline femur & 0.57 & 0.63 & 0.56 & 0.62 & 0.54 & 0.60 \\
\hline humerus & 0.55 & 0.59 & 0.57 & 0.66 & 0.51 & 0.92 \\
\hline
\end{tabular}



Swan humerus (wing bone) is filled with air sacs instead of marrow
Membranes of air sacs, vasculature, and air have some mass:
\[
\rho_{\text {airsac }}=\rho_{\text {marrow }} / 50
\]

Values for \(k\) in terrestrial mammals
\begin{tabular}{llllllll}
\(\underline{\text { Bone }}\) & \(\underline{\text { Hare }}\) & \(\underline{\text { Fox }}\) & \(\underline{\text { Lion }}\) & \(\underline{\text { Camel }}\) & \(\underline{B u f f a l o}\) & \(\underline{\text { Swan }}\) \\
femur & \(\mathbf{0 . 5 7}\) & \(\mathbf{0 . 6 3}\) & \(\mathbf{0 . 5 6}\) & & \(\mathbf{0 . 6 2}\) & \(\mathbf{0 . 5 4}\) & \(\mathbf{0 . 6 0}\) \\
humerus & \(\mathbf{0 . 5 5}\) & \(\mathbf{0 . 5 9}\) & \(\mathbf{0 . 5 7}\) & \(\mathbf{0 . 6 6}\) & \(\mathbf{0 . 5 1}\) & \(\mathbf{0 . 9 2}\) \\
\hline
\end{tabular}

\section*{Design for selective failure: anisotropy and ripping fingernails}


Nails need to be able to resist upward bending forces and prevent damage to vulnerable nail bed at base

Keratin fibers can be aligned in one direction to provide material ANISOTROPY (different properties in one direction vs. another)

Longitudinally oriented keratin fibers would provide more stiffness to upward bending, but this might propagate tears directly to the nail bed

\section*{Design for selective failure: anisotropy and ripping fingernails}


How do tears propagate in fingernails?

Nails need to be able to resist upward bending forces and prevent damage to vulnerable nail bed at base
 transversely-oriented keratin fibers that deflect tears to the side of the nail, providing MATERIAL ANISTROPY (makes easier to tear to side than to base) (makes nails harder to bend upward)

\section*{Biology 427 Biomechanics \\ Lecture 12. Less simple structures: dealing with anisotropy, inhomogeneity, and scaling in biological structures.}
- Recap design of mammalian long bones and ripping fingernails
- Insect wing venation patterns and structural anisotropy
- Putting together the pieces: using finite element models to understand complex structures
- Bending in just the right places: inhomogeneity in biological structures

Values of \(k\) for long bones are close to our predictions for a
\begin{tabular}{ccc} 
cost of & \begin{tabular}{c} 
probability \\
of failure
\end{tabular} \\
structure & cost of failure & \begin{tabular}{c} 
cost to \\
produce
\end{tabular} \\
\(\downarrow\)
\end{tabular} strong structure that minimizes mass per unit length
\[
(\mathbf{n})=\mathbf{P}(\mathbf{n}) * \mathbf{F}+\mathbf{G}(\mathbf{n})+\mathbf{U}(\mathbf{n})
\]
terrestrial mammals:

swan humerus:


Values for \(k\) in terrestrial mammals
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Bone & Hare & Fox & Lion & Can & Buffalo & Swan \\
\hline femur & 0.57 & 0.63 & 0.56 & 0.62 & 0.54 & 0.60 \\
\hline humerus & 0.55 & 0.59 & 0.57 & 0.66 & 0.51 & 0.92 \\
\hline
\end{tabular}

\section*{Scaling in biological} structures: a simple matter of getting bigger?

\[
\mathbf{k}=\mathbf{r} / \mathbf{R}
\]
isometric scaling: structures retain same relative proportions as they become larger

*structures may be scaled to provide a similar functional performance (i.e. similar degree of bending) instead of remaining geometrically similar
* Many biological structures do not scale isometrically because forces do not scale isometrically
i.e. Euler buckling: \(\mathrm{F}_{\mathrm{E}}=\mathrm{n}^{2} \mathrm{E} \mathbf{I} / \mathrm{L}^{2}\) critical buckling force goes as \(1 / L^{2}\), so longer columns will buckle at a lower relative force --> elephant vs. mouse legs

\section*{Design for selective failure: anisotropy and ripping fingernails}


How do tears propagate in fingernails?

Nails need to be able to resist upward bending forces and prevent damage to vulnerable nail bed at base


Thick middle layer of nails has transversely-oriented keratin fibers that deflect tears to the side of the nail, providing MATERIAL ANISTROPY (makes easier to tear to side than to base)

Insect wings are flexible structures that are flapped through the air up to several hundred times per minute!


\section*{Insect wings deformations may affect force generation and aerodynamic efficiency}

How are wing deformations controlled during flight?


Does insect wing structure control passive shape changes?



\section*{Is insect wing stiffness related to venation pattern?}
- Odonata (dragonflies, damselflies)

- Isoptera (termites)
- Neuroptera (lacewings)
- Hymenoptera (bees,wasps)
- Diptera (flies)

- Lepidoptera (moths, butterflies)


\section*{Quantify wing venation pattern in 16 species from 6 orders}

Lestes spp. (damselfly)


Calliphora spp. (blow fly)

\section*{Quantify wing venation pattern in 16 species from 6 orders}


\section*{Quantify wing venation pattern in 16 species from 6 orders}

\section*{percent vein area}
(vein area/total area)
vein thickness/span
((vein area/total length)/span)

\section*{Quantify wing venation pattern in 16 species from 6 orders}

\section*{percent vein area}
(vein area/total area)

vein thickness/span
((vein area/total length)/span)
\(\log\) (vein intersections)


\section*{Quantify wing venation pattern in 16 species from 6 orders}

\section*{percent vein area}
(vein area/total area)
vein thickness/span
((vein area/total length)/span)
\(\log (\) vein intersections \()\)

percent leading edge veins
(lead vein area/total vein area)

\section*{Quantify wing venation pattern in 16 species from 6 orders}

\section*{percent vein area}
(vein area/total area)
vein thickness/span
((vein area/total length)/span)
\(\log (\) vein intersections \()\)

percent leading edge veins
(lead vein area/total vein area)
leading edge vein density
(lead vein area/total lead area)

Treat the wing as a 2-D beam to measure overall stiffness
*Flexural stiffness (EI)
\(E=\) Young's modulus (material properties)
\(I=\) second moment of area (cross-sectional geometry)


\section*{Treat the wing as a 2-D beam to measure overall stiffness}
*Flexural stiffness (EI)
\(E=\) Young's modulus (material properties)
\(I=\) second moment of area (cross-sectional geometry)
\[
E I=\frac{F L^{3}}{3}
\]


Measuring force and wing tip displacement


Measuring force and wing tip displacement



\section*{Spanwise and chordwise stiffness increase with wing size}


Is a species' position above or below this relationship related to venation pattern?


Calculate independent contrasts of wing stiffness residuals and venation traits


Is overall wing stiffness correlated with venation pattern? NO


Despite enormous variation in the arrangement of wing veins, overall wing stiffness is independent of venation pattern!


\section*{Variation in wing stiffness is dominated by wing size}


Why is insect wing stiffness so strongly related to wing size?

\[
\begin{aligned}
& E I=\frac{F L^{3}}{3} \\
& I=w t^{3} / 12 \\
& E I \mu w t^{3}
\end{aligned}
\]
- EI is a measure of cross-sectional shape ONLY (length independent)

But, insect wings get wider as they get longer.... w \(\mu \mathrm{L}\)
- How does thickness scale with wing length?
-- if thickness scales isometrically with length, EI \(\mu \mathrm{L}^{4}\)
-- if thickness is independent of length (single layer of cuticle), EI \(\mu \mathrm{L}\) Perhaps scaling of wing stiffness provides functional, rather than geometric similarity (i.e. constant /L)?......

\section*{What is the source of spanwise-chordwise anisotropy in wings?}


Finite element model of a moth wing


Divide wing into small, interconnected elements (flat plates)
- balance forces and moments around each simple plate and sum plates to find how whole complex structure behaves

Are wing veins the source of spanwise-chordwise anisotropy?
Leading edge veins generate spanwise-chordwise anisotropy

- Increase \(E\) of wing vein elements above that of surrounding membrane elements (to mimic increased \(I\) of tubular veins)
- Apply a point force to the tip of the wing
- Record computed tip displacement
- Calculate \(E I\) of whole model wing

- FEM model with all veins

FEM model with leading edge veins only

\section*{Are insect wings really homogeneous along their length?}


Manduca sexta


Aeshna multicolor

\section*{Possible patterns of spatial variation in wing stiffness}



\section*{Calculating regional variation in stiffness}

heterogeneous beam

\[
E I=\frac{F L^{3}}{3}
\]
\[
E I(x)=\frac{M(x)}{d^{2} / d x^{2}}
\]
\[
E I(x)=\frac{F(L \quad x)}{d^{2} / d x^{2}}
\]

Measuring displacement continuously along a wing


\section*{Changes in the y-direction of the picture correspond to bending in the z -direction of the wing}
unloaded wing

loaded
wing


\section*{Solve for the EI distribution that best fits} the measured wing displacement
\[
E I(x)=\frac{F\left(\begin{array}{ll}
L & x
\end{array}\right)}{d^{2} / d x^{2}}
\]

EI \(\underbrace{}_{x}\) exponential \(\left[E I(x)=c^{*} \exp ^{a x}\right]\)

EI \(\underbrace{\sim}_{x}\) polynomial \(\left[E I(x)=p x^{2}+q x+r\right]\)

Spanwise wing stiffness declines exponentially in Manduca


Spanwise wing stiffness declines exponentially in Manduca


Chordwise wing stiffness decline exponentially in Manduca


\section*{Spanwise and chordwise stiffness decline exponentially in both hawkmoths and dragonflies}


\section*{How does an exponential decline in stiffness affect wing bending?}


Create a FEM wing in which material properties decline exponentially, but veins are stiffer than membranes to provide anisotropy
*adjust material properties of both models so average tip and trailing edge displacement is the same as in a real Manduca wing

\section*{How does the spatial pattern of stiffness in model wings compare to real Manduca wings?}


exponential wing

\section*{How do the model wings respond to a static load?}


How do the model wings respond to a dynamic load?


An exponential decline in stiffness localizes wing bending to the tip and trailing edge of wings, where force production is most sensitive to changes in wing shape!

\section*{Biology 427 Biomechanics \\ Lecture 13. Finite elements, joints and skeletons}
-Recap flexural stiffness (EI), design for minimum weight, and stress distributions.
-Finite Element Analyses in Evolution
- Motion is permitted at joints with several degrees of freedom and low EI
- Mechanical advantage and speed ratio (those moment (or torque) balances)
-Rhinogrades: an enigmatic taxon

\section*{Project proposals: due Friday, February 6}

Proposals should be no more than 3 double-spaced pages, and should address the following:
- What is your question?
- Why is your question important/interesting?
- What is known about your question? (give background from literature*/web searches)
- How will you develop a quantitative analysis of your problem? (you do not need to provide any equations in the proposal, but should explain the quantitative approach/steps you will take)
-*Read "Advice for preparing projects" on the webpage!

\section*{Does curvature reduce the stresses that result from predators?}

\section*{Numerical experiments on shell shapes}

-Create virtual shells (a la Raup)
-Imbue them with mechanical characteristics that represent extant shells (Young's modulus \(=1 \mathrm{GPa}\) )
-Place point forces that mimic crushing predators.
-Examine the stress distribution.
-Explore how coiling affects stress distribution.

\section*{Finite Element Analysis}

How do size and shape
\[
\begin{aligned}
& \mathrm{E}=1 \mathrm{GPa} \\
& \mathrm{t}=0.5 \mathrm{~mm}
\end{aligned}
\]
affect the magnitude and distribution of stress?




\section*{Brief review of skeletons}
-Mechanical support
-Protection
-Force transmission
-Energy storage
- Rigid and flexible elements: Endo- and exoskeletons -Fluid filled cavities: hydraulic skeletons
-Solid muscle: muscular hydrostats
-Protein filaments: cytoskeleton

Rigid elements connected by joints with (potentially) six degrees of freedom


cruciate ligaments
constrain knee motions
coefficient of friction is about 0.003
good ball bearings \(\sim 0.02\)



Fig. 2.10. The mechanisms of the kinetic skulls of (a) a monitor lizard (Varanus) and (b) a bird. The postorbital ligament of the bird is shown black.


At static equilibrium
The speed ratio
\(\frac{L_{\text {out }} d \theta / d t}{L_{\text {in }} d \theta / d t}\)
\(=\mathbf{L}_{\text {out }} / L_{\text {in }}\)


\section*{Biology 427 Biomechanics Lecture 14. Structural systems and adhesives}
- Recap skeletal systems, joints, mechanical advantage, speed ratio
- Worms, tongues and tentacles: Hydrostats and muscular hydrostats for support and movement
- Staying put: Mechanisms of adhesion

\section*{Brief review of skeletons -Mechanical support -Protection \\ -Force transmission -Energy storage}

- Rigid and flexible elements: Endoand exoskeletons
- Fluid filled cavities: hydraulic skeletons
- Solid muscle: muscular hydrostats


Functions of skeletal systems -Mechanical support -Protection
-Force transmission
-Energy storage

\section*{antagonistic muscles/materials are needed to return elements to original position after a motion}

Elements of skeletal systems resist compression, tension or both struts - can take both tension and compression (i.e. bones)
ties - resist tension only (i.e. tendons)
incompressible elements (i.e. water-filled cavities or muscle)


\section*{Categorizing supportive systems}
1. Tensile systems - built to resist tension only (i.e. algal stipes, fruit stems, toe-pad setae)
2. Strutted systems
- single or branched struts (i.e. tree branches, coral)
- articulated struts (i.e. vertebrate
 skeletons, insect exoskeletons)


\section*{Articulated struts can have multiple linkages}


\section*{Most biological joints contain 1-3 rotational degrees of freedom}


Human knee: cruciate ligaments constrain knee motions

Movement at joints requires low resistance to distortion (lubrication, low EI)


WEEPING LUBRICATION

\section*{Most biological joints contain 1-3 rotational degrees of freedom}


\author{
Movement at joints requires low resistance to distortion \\ (Iubrication, low EI)
}

Arthroidal membrane (untanned insect cuticle - low \(E I\) )


\section*{Most biological joints contain 1-3 rotational degrees of freedom}


Speed vs. Strength in articulated support systems


Speed vs. Strength in articulated support systems

Horse:
low mechanical advantage high speed ratio FAST

Armadillo:
high mechanical advantage low speed ratio STRONG


Lin/Lout = big

\section*{Categorizing supportive systems}
1. Tensile systems - built to resist tension only (i.e. algal stipes, fruit stems, toe-pad setae)
2. Strutted systems
- single or branched struts (i.e. tree branches, coral)
- articulated struts (i.e. vertebrate
 skeletons, insect exoskeletons)


\section*{Categorizing supportive systems}
1. Tensile systems - built to resist tension only (i.e. algal stipes, fruit stems, toe-pad setae)
2. Strutted systems
- single or branched struts (i.e. tree branches, coral)
- articulated struts (i.e. vertebrate skeletons, insect exoskeletons)
- dispersed struts (i.e. dispersed spicules in sponges)


\section*{Categorizing supportive systems}
1. Tensile systems - built to resist tension only (i.e. algal stipes, fruit stems, toe-pad setae)
2. Strutted systems
- single or branched struts (i.e. tree branches, coral)
- articulated struts (i.e. vertebrate skeletons, insect exoskeletons)
- dispersed struts (i.e. dispersed spicules in sponges)
3. Internally pressurized systems
- hydrostats - watery-filled cavities under internal pressure (i.e. worms, plant stems)

\section*{A very quick introduction to fluids and pressure.....}

chamber filled with gas molecules

\section*{lower volume =} higher pressure
-pressure and volume inversely proportional in gases
\[
P V=n R T
\]
\(P \approx 1 / N\)
assume constant
if no change in temperature

\section*{Hydrostats are fluid-filled structures under internal pressure}

- pressurized fluid exerts an outward force on the membrane (membrane is in tension)
- membrane exerts an inward force on the fluid
- fluid is essentially incompressible, so hydrostats can behave like "solid" structures that muscles can act upon

\section*{Biological hydrostats are often cylindrical}


\section*{Biological hydrostats are often cylindrical}


\section*{Biological hydrostats are often cylindrical}


\section*{Shape changes in hydrostats can drive locomotion or provide support}

\(\Delta \mathrm{P}=\) pressure difference
*smaller cylinders can withstand relatively larger pressure differences
*cylinders with thicker walls can withstand larger pressure differences

Circumferential stress:
\[
\sigma_{\mathrm{C}}=\Delta \mathrm{Pr} / \mathrm{t}
\]

But...
this means cylinders will bulge outwards twice as fast as they will lengthen

Hydrostat behavior can be controlled by tensionresisting fibers in the outer membrane

longitudinal and
circumferential fibers
- cylinder resists compression and tension, high flexural stiffness
- local buckling with large compressive loads
- low resistance to torsion


\section*{nelical fibers}
-lengthens and shortens smoothly, bends more easily - less prone to local buckling
- high resistance to torsion
- more common in biological systems

\section*{The angle of helical fibers determines the behavior of fiber-reinforced hydrostats}


\section*{The angle of helical fibers determines the behavior of} fiber-reinforced hydrostats

- Lie in flaccid region because not circular cylinders (not full volume)
- Contraction of longitudinal muscles makes shorter and more round
- Contraction of circumferential muscles makes longer and more round

\section*{The angle of helical fibers determines the behavior of fiber-reinforced hydrostats}


> Stiff worms - unsegmented nematodes, or roundworms
- Strong cuticle, round cross-section, LONGITUDINAL MUSCLES ONLY
- Ascaris (intestinal parasite) has a fiber angle of \(75^{\circ}\)
- Because volume cannot change, contraction generates pressures of up to 30 kPa - worms also get a little shorter
- Recoil of fibers to lower angle antagonizes the action to restore shape

\section*{What if hydrostat volume can change?}

- Contraction of longitudinal muscles makes shorter, but fiber angle resists shortening
- Pressure rises and fluid is expelled into ampulla --> foot retracts
- When ampulla contracts, fluid is expelled back into tube foot and foot extends

\section*{What if hydrostat volume can change?}


\section*{Squid mantle}
- Squid mantle has circumferential muscles only and fibers at an angle of \(\sim 25^{\circ}\)
- Contraction of circumferential muscles tends to extend mantle
- Extension at low fiber angle implies a reduction in volume
- Water squirts from mantle and squid accelerates in opposite direction

\section*{Do any biological structures use longitudinal and circumferential fibers instead of helical?}

longitudinal and circumferential fibers
-cylinder resists compression and tension, high flexural stiffness

helical fibers
-lengthens and shortens smoothly, bends more easily -more common in biological systems

Mammalian penises depend on hydrostatics for functioning, and fibers run longitudinally and circumferentially, not helically
* Fiber orientation provides high stiffness and minimizes shape changes and compression

\section*{Categorizing supportive systems}
1. Tensile systems - built to resist tension only (i.e. algal stipes, fruit stems, toe-pad setae)
2. Strutted systems
- single or branched struts (i.e. tree branches, coral)
- articulated struts (i.e. vertebrate skeletons, insect exoskeletons)
- dispersed struts (i.e. dispersed spicules in sponges)
3. Internally pressurized systems
- hydrostats - watery-filled cavities under internal pressure (i.e. worms, plant stems)
- muscular hydrostats - contraction of one group of muscles causes extension of another group (i.e. trunks, tentacles and tongues)

\section*{Muscular hydrostats rely on the fact that muscles themselves are incompressible}

squid tentacle
lizard tongue
Muscles wrap around each other
- Contraction of one group
causes extension of the other because volume cannot change

(b)

elephant trunk


\section*{What if you don't want to go anywhere? How can you stay put just where you are?}

Attachments may be permanent or temporary, and must resist forces that are often quite large (i.e. gravity, wind and wave currents)


\section*{What if you don't want to go anywhere? How can you stay put just where you are?}

Attachments may be permanent or temporary, and must resist forces that are often quite large (i.e. gravity, wind and wave currents)


\section*{What if you don't want to go anywhere? How can you stay put just where you are?}

Attachments may be permanent or temporary, and must resist forces that are often quite large (i.e. gravity, wind and wave currents)


\section*{What if you don't want to go anywhere? How can you stay put just where you are?}

Attachments may be permanent or temporary, and must resist forces that are often quite large (i.e. gravity, wind and wave currents)


\section*{Methods of Adhesion}
- Interlocking devices -hooks, spines or claws


Passive spines and claws very effective on rough surfaces.


Methods of Adhesion
- Interlocking devices
- Suction - adhesion depends on pressure difference between fluid inside suction cup and atmosphere

Slow locomotion, high duty factor, move only one foot at a time.

Effective only on smooth surface.


\section*{Methods of Adhesion}
- Interlocking devices
- Suction
- Extruded goo-glue, mucus etc. that fixes animal to substrate
- Stefan adhesion - thin layer of viscous fluid resists shear


\section*{Methods of Adhesion}
- Interlocking devices
- Suction
- Extruded goo

- Capillary action thin layer of water between two surfaces resists pulling apart because surface tension of water acts to reduce air-water interface


Tubercles enhance capillary adhesion.
Locomotion: moderate speed, walking gait.

Methods of Adhesion
- Interlocking devices
- Suction
- Extruded goo
- Capillary action
- Intermolecular forces
- electrostatic attraction - interaction between charged ions
- polar interactions -attraction between molecules with a charge separation (i.e. hydrogen bonds in \(\mathrm{H}_{2} \mathrm{O}\) )
- van der Waals forces - transient interactions between positive and negative portions of molecules as electrons rotate to opposite sides of orbits

Geckos can run upside down, accelerate on polished glass, and hang from one toe.......

How do gecko feet adhere to surfaces so well?


\section*{Huge diversity of gecko feet....}


\section*{Gecko Foot Structure}


Rows of Sticky Leaves (Lamellae)

\section*{Lamellae}



\section*{How do gecko feet adhere to surfaces so well?}
- Interlocking devices \(\rightarrow\) no hooks, can stick on perfectly smooth surface
- Suction
- Extruded goo
- Capillary action

- Intermolecular forces
- electrostatic attraction
- polar interactions
- van der Waals forces

\section*{How do gecko feet adhere to surfaces so well?}
- Interlocking devices \(\rightarrow\) no hooks, can run on perfectly smooth surface
- Suction \(\rightarrow\) dead geckos remain stuck to a wall in a vacuum (no pressure difference for suction to function)
- Extruded goo \(\rightarrow\) no glands in feet, no footprints on surfaces
- Capillary action \(\rightarrow\) toes are hydrophobic, stick equally well to hydrophobic and hydrophilic surfaces
- Intermolecular forces
- electrostatic attraction \(\rightarrow\) works in ionized environment
- polar interactions \(\rightarrow\) works on nonpolar surface
- van der Waals forces ??????

\section*{Gecko Foot Structure}


Rows of Sticky Leaves (Lamellae)

\section*{Lamellae}




1 seta

```

