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Lecture 1:  An introduction to Biomechanics:  Jumping right in.

•What’s the course about?

•How is the course organized?

•What physics basics need I review?

•Jumping right into it:  the mechanics of ballistic bodies.

Many levels of biological organization:
molecular         cellular          tissue        organism         population

Course Syllabus

Physical principles underlying biological
processes and mechanisms (movement, design,
architecture, materials, transport).



• 3 lectures per week
•  Real and CD text books with assigned reading
• Handouts
• Weekly problem sets (physics and math don’t get

easliy  or reasonably memorized)
• Critical reviews of the scientific literautre
• Discussion   (review problem sets, panel discussion of

papers)
• One course project (in which you develop your own

physical analysis of biological problems)
• No exams

50%

50%

COURSE ORGANIZATION



Some basics for Biomechanics: 
 A simple problem with a physics review

Rule 1:  Equations must be dimensionally correct!
Mass,  Length and  Time   (we commonly use S.I. units*)

*Systemme Internationale

          Describe physical quantities
distance x L m
Velocity v,dx/dt L T-1 m s-1

Acceleration a,dv/dt,d2x/dt2 L T-2 m s-2

Momentum M, m v M L T-1 kg m s-1

Force F, d(mv)/dt M L T-2 Newton, kg m s-2

Work E, F.x (if constant F)   M L2 T-2 Joule, kg m2 s-2

Power P, dE/dt   M L2 T-3 Watt, kg m2 s-3



Some basics for Biomechanics: 
 A simple problem with a physics review

A locust

Humans
and parts of
them

Distance?

Velocity?

Acceleration?

Force?

Work?

Power?



4 cm   (0.04 m)
1/40 s (0.025 s)

0.003 kg
(3 g)

α = 55
x

y

uo = 3.4 m/s

Some morphology and data this is a parabola….
why 55°?



Force?  Energy?  Power?
Need the initial acceleration
2 a d = uo

2

4 cm   (0.04 m)
1/40 s (0.025 s)

|uo| = 3.4 m/s

a = 145 m s-2

0.003 kg

F = m a = 0.43 N ( both legs)

0.21 N/leg

0.21 N

2.1 N

muscle force ~10 foot force

Muscle Work = F Δx
 = 2.1 x  3 10-3 N m 
= 6.3 mJ

Power = W/time
= 6.3/0.025
252 mW



Power = W/time
= 6.3/0.025
252 mW

Human on a bicycle ergometer   ~ 40 W/kg
Maximum single twitch in vertebrate muscle   ~400 W/kg

1680 W/kg muscle

5% mass = leg muscle
 ~ 1.5 10-4 kg



α = 55
y

x

|uo| = 3.4 m/s

m= 3 10-3 kg

uo= [uo cos α, uo sin α]

After take-off forces sum to zero 
Σ Fx = m dux/dt = 0
Σ Fy = m duy/dt + mg = 0

No air resistance

m duy/dt = -mg
duy/dt = -g
uy = -gt + uosinα
y =∫ uy dt  = uosinα t - gt2/2

Max y when dy/dt = 0; 

How high?

ymax = (uosinα)2/2g  = 0.3

x = uo cos α  t

Find t when y is zero!
t = 2 uo sin α/g

xmax = 2 uo
2 cos α sin α/g

How far?



α = 55
y

x

No air resistance

y =∫ uy dt  = uosinα t - gt2/2

x = uo cos α  t

y = x sinα cos α  - g(x/ uo cos α )2/2





Lecture 2: Muscle and molecular mechanics*

•Recap

•Molecular basis of force generation:  ATP
hydrolysis expands an elastic molecule

•Release of ‘elastic strain energy’ is manifest
as force.

•Three key experiments: old and new.

•New biomechanical analyses.

Course web page:  
http://faculty.washington.edu/danielt/BiomechanicsWEB/Bio427.html

*Read Chapter 1 “Machinery of Movement” on CD



What are the molecular determinants of force ?



The Geometry of Muscle

Sarcomere





Ca++

Ca++

Ca++

ATP



Ca++ Ca++

ATP ->  ADP + P



State Transitions
M.ADP. Punbound  

ATP

ADP

A.M.ADP. P

weakly bound

P

strongly bound  

A.M.ADP. P



Sarcomere Length (um)
2.0                  3.0                     4.0

ShorteningVelocity (sarcomere/s)

time (s)

1.0 N 1.0 N

0.1 

1.0 N

-0.5     0.0     0.5     1.0     1.5

Length

time (s)

1.0 N

0.1 

Experimental Mechanical Evidence?



In vitro motility *

*Dr. Bryant Chase and Kristi Kulin



Optical Tweezers
Photons have momentum (but no mass)
Photon flux ~ momentum flux ~ force

f-actin filament

myosin molecule



Forward transition rates depend on:
•distance to a binding site
•distortion of a cross-bridge
•Reverse transition rates calculated from
equilibrium thermodynamics (exp(ΔG)
dynamics).

State 1  

State 2State 3

k12
k21

k32

k23

k13

k31



If filaments are not deformable, there is no interaction
between cross-bridges and mass-action models can be used

If deformations result from cross-bridge forces, then this
is a coupled system  -- spatially explicit models are then
needed*.

*Huxley, Wakabayashi, Isambert, and many others



Geometry*:  Two interacting compliant filaments
Z-line 2.2 um

Thin filament

1.7 um
Thick filament

yi

43 nm

37 nm

*About 20 cross-bridges
and 30 binding sites in each
half sarcomere.

How do these cycle?How are forces distributed?

2000 pN/nm
1-10 pN/nm
1500 pN/nm



Recall Hooke’s Law

-F F
k

lo

F = -k (l -lo)

-F F

lo ∆l
l



yiyi yi+1yi-1

xj xj+1xj-1

Mechanics
km = 2100 pN/nm

kxb = 1 pN/nm

ka = 1700 pN/nm

km(yi+1- yi - yo) + kxb (xj - yi -xbo) - km(yi - yi-1 - yo) = 0
ka (xj+1- xj- xo) - kxb ((xj - yi- xbo) - ka(xi- xi-1- xo) = 0

For the i th bound cross-bridge



All cross-bridges initially unbound (state 1)

STOCHASTIC
FORCING

CROSS-BRIDGE
CYCLE RULES

FORCE
BALANCE

SPECIFIED 
END MOTIONS
(VELOCITY,
STEP ...)

AVERAGE AND INSTANTANEOUS
FORCES, ATP UTILIZATION, AND STRAINS

Computational Approach:  Monte-Carlo Simulation



To

MECHANICAL  TUNING EMERGES

floppy

stiff

20
200

2000
20000

2

4

6

8

Thin filament 
spring constant
(pN/nm)

Cross-bridge 
spring constant
(pN/nm)



“EFFICIENCY”  CAN BE TUNED  TOO

To/ATP

kxb (pN/nm)
ka (pN/nm)

20
200

2000

20000
2

4

6

8



Lecture 3: Muscle and physiological mechanics*

•Recap

•Isometric versus isotonic experiments

•Relations between force and time, length and
velocity

•The work-loop method: physiologically
relevant mechanics.

*Read Chapter 1 “Machinery of Movement” on CD



What are the determinants of force ?

time (s)

1.0 N

0.1 

*

Temporal characteristics of activation



What are the determinants of force ?

Length of muscle

Gordon, Huxley and Julian 1966



Reminders about Length Tension curves

Sarcomere Length (um)

2.0                  3.0                     4.0

1.0 N

F

But where do animals normally operate?
Who cares?
What are the mechanical consequences of dynamic length changes over
different parts of this business?



Reminders about Length Tension curves

Might get an instability

Sarcomere Length (um)

2.0                  3.0                     4.0

1.0 N

F

Great: get all the force but…. ????
A region with hidden
binding sites.
Faster force declines.

e.g. hearts;



vertebrate cardiac

vertebrate skeletal

Length - Tension relationships of skeletal and
cardiac muscle differ considerably



Frank-Starling Law:

Stroke volume∝ End-diastolic volume

(increased cardiac output due to increased
ventricular filling)

Regulation of Cardiac Output



Volume of Wall: Vw = 4/3π(R3 - (R-T)3)

Vw ∝ R2T

With constant muscle volume: T ∝ 1
R2

Stress in wall:  σ = PR
T

σ ∝ PR3

w
al

l s
tr

es
s

radius

Frank-Starling Law: Mechanical Consequences

T

R



What are the determinants of force ?

Speed of muscle shortening

Hill’s equation

T =  b To - a v
          v +  b

b/vmax  ≈  a/To ≈ 1/4

To

vmax

  

T =    vmax -  v
To     4v + vmax/4



time (s)

1.0 N

0.1 

*

ShorteningVelocity (sarcomere/s)

1.0 N

-0.5     0.0     0.5     1.0     1.5

*

Sarcomere Length (um)
2.0                  3.0                     4.0

1.0 N
*

Isometric and isotonic
conditions are unlikely
in physiologically
relevant situations.

Force = f(t,l,v)



ΔL

Muscle Function: Generate mechanical power

Work = F x ΔL      (Joules)

Power = Work x Frequency
(Joules/s = Watts)

Force



Work Out

Length

Time

Stim

Force
Fo

rc
e

Length

=

=   Net Work

-

-     Work In

Workloop Workloop MethodsMethods



Lecture 4:   TerrestrialLecture 4:   Terrestrial
Locomotion I  Simple Analyses ofLocomotion I  Simple Analyses of
Ballistic Movement.Ballistic Movement.

Recap: projectiles and muscleRecap: projectiles and muscle
Current approaches for analyzingCurrent approaches for analyzing

terrestrial locomotion.terrestrial locomotion.
Gaits and patterns of limb motionGaits and patterns of limb motion
Ballistic walking and the invertedBallistic walking and the inverted

pendulumpendulum



time (s)

1.0
N

0.1 

*

ShorteningVelocity
(sarcomere/s)

1.0
N

-0.5     0.0     0.5     1.0     1.5

*

Sarcomere Length (um)
2.0                  3.0                     4.0

1.0
N

*

Isometric and
isotonic conditions
are unlikely in
physiologically
relevant
situations.

Force = f(t,l,v)



ΔL

Muscle Function: Generate mechanical power

Work = F x ΔL      (Joules)

Power = Work x Frequency
(Joules/s = Watts)

Force



Work Out

Length

Time

Stim

Force
Fo

rc
e

Length

=

=   Net Work

-

-     Work In

Workloop Workloop MethodsMethods



What are the determinants of force ?

Run the “work loop” program on page 
21 in the chapter on muscle in the CD 

Md2x/dt2 =
F(x,dx/dt,t)

ΔL



Cost of transport declines with body size
Lo

g 
Co

st
 o

f 
Tr

an
sp

or
t

Log Body Mass (kg)
    -5      -4       -3      -2      -1       0      1       2      3       4       5       6

2.0

1.0

0

-
1.0

-
2.0

ant
mouse

lizard
rabbit

dog
chetah

human
elephant

fly bee

bat

pigeon
fish

shark dolphin

human



Movement Biomechanics

Patterns in time and space (Kinematics)

Forces

Dynamics (control and stability)

Energy

stride length

time (s) ->  0                  0.5                 1.0



GAITS

•stride length:  distance
between footfalls of the same
foot

•stride frequency:   number of
footfalls per time

•duty factor:  fraction of stride
time that a foot is on the
ground (human walking = 0.5
- 0.6, running = 0.35).  Gaits
with  duty factors less than 0.5
imply airborne phases.

•relative phase:  time a foot is
set down as a fraction of the
stride time.



Simple Quantifiers of Movement on Land

V2 = a R
VV2 2  <  g L <  g L

R



Simple Quantifiers of Movement on Land

V2 = a R
VV2 2  <  g L <  g L

R



Modifiers of the radius of curvature

Lumbar flexion
Pelvic rotation
Pelvic tilt



10

5

2

1 0.1     0.5    1      2        5    10     20

Froude = V2  /  g L

R
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/L

S
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Biology 427 Biomechanics

Lecture 5.   Terrestrial locomotion II:
mechanical analysis of gaits and jumpiness.

•Recap: gaits and ballistic walking

•When the Froude Number (V2/g L) is greater
than 1, simple ballistic walking is no longer
possible.

• The jumper model accounts for an airborne
phase of movement.

•Calculating optimal gaits for energy
expenditure



Simple Quantifiers of Movement on Land

V2 = a R
VV2 2  <  g L <  g L

R

g

Fr = V2/gL

“Ballistic Waking”



10

5

2

1 0.1     0.5    1      2        5    10     20

Froude = V2  /  g L

Re
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The jumper:  for speeds greater than Fr = 1, gait must
change with an airborne phase

M

m

h

d

a                      b

V

Assume 
constant V
no air resistance
no skidding

Assume 
constant V
no air resistance
no skidding

gait:   jumpiness = j = b/a

Goal:  compute the power (rate of energy expenditure)
as a function of size (M,m) and gait (j = b/a)



M

m

h

d

a                      b

V

Goal:  compute the power (rate of energy expenditure)
as a function of size (M,m) and gait (j = b/a)

h = g b2/8V2

d/a = h/b

h = g b2/8V2

d/a = h/b

h  + d =

(a + b) gb/8V2

h  + d =

(a + b) gb/8V2

work to launch the body
work to break the fall
work to move the foot

 =   M g (h + d)   
 =   γ M g (h + d) 
 =   m V2/2          

Energy = 



M

m

h

d

a                      b

V

Goal:  compute the power (rate of energy expenditure)
as a function of size (M,m) and gait (j = b/a)

h = g b2/8V2

d/a = h/b

h = g b2/8V2

d/a = h/b

h  + d =

a + b gb/8V2

h  + d =

a + b gb/8V2

Energy = γ M g (h + d)  +  M g (h + d) + m V2/2
              = (1 + γ) M g (h + d)  +  m V2/2

t = (a + b)/V

P = Energy/time



M

m

h

d

a                      b

V

Goal:  compute the power (rate of energy expenditure)
as a function of size (M,m) and gait (j = b/a)

Power =  (1 + γ) M g2 b/8V+  m V3/2(a+b)
=  (1 + γ) M g2 a j /8V+  m V3/2a(1+j)

t = (a + b)/V



Power =  (1 + γ) M g2 b/8V+  m V3/2(a+b)
=  (1 + γ) M g2 a j /8V+  m V3/2a(1+j)

M

m

h

d

a                      b

V

t = (a + b)/V

 How does Power vary with 
foot mass (m)?
body mass (M)?
body velocity (V)?
leg length (~a)?
jumpiness (j)?

P

0                               inf.



power

jumpiness (b/a)

a = 0.2 m
V = 3 m/s
M = 50 kg
m = 1 kg



Power

velocity

j



Power =  (1 + γ) M g2 b/8V+  m V3/2(a+b)
=  (1 + γ) M g2 a j /8V+  m V3/2a(1+j)

M

m

h

d

a                      b

V

t = (a + b)/V

 dP/dj = 0 defines a maximum P

0                               inf.



Biology 427 Biomechanics
Lecture 6.   Everyday stress and strain and the
stiffness of biological materials I:  terms, definitions
and other basics

•Recap optimization of gaits for minimum
power out put and cost of transport.

•Loads and deformations for basic stress and
strain

•Stiffness: a measure of how materials respond
to loads

•Strength



Power =  (1 + γ) M g2 b/8V+  m V3/2(a+b)
=  (1 + γ) M g2 a j /8V+  m V3/2a(1+j)

M

m

h

d

a                      b

V

t = (a + b)/V

 dP/dj = 0 defines a maximum
(if d2P/dj2 < 0 ) 0                            5

                 j  

P

Comes from a calculation
for the work to launch and
land and the work to move
the feet

       P
(M + m) g VCost = 



Power

velocity

j

- 1 < γ < 1
γ = −0.2 γ = 0.2



Types of loads and deformations

Tension

Compression

Torsion
Bending



Types of loads and deformations

uniaxial loads
biaxial loads

triaxial loads



Material vs. structural properties

stress (σ) = Force/Area 

Need to eliminate the effect
of size and shape to define
material properties.

Need to eliminate the effect
of size and shape to define
material properties.

σ = F/A

L

Lo

strain (ε)= (L - Lo)/Lo

Pa = N/m2



Material vs. structural properties

stress (σ) = Force/Area stress (σ) = Force/Area 

σ = F/Aσ = F/A

L

Lo
strain (ε)= (L - Lo)/Lo

     εT = ∫ dL/L = ln (L)
     λ  =  L/Lo

strain (ε)= (L - Lo)/Lo

     εT = ∫ dL/L = ln (L)
     λ  =  L/Lo

Force

        ΔL

k Hooke’s Law
F = k ΔL

Area
σ =

ε =       /Lo

E

Young’s modulus
(E) measures the
stiffness of a
material
E = σ/ε



stress  (σ) :  the distribution of force over an area
strain  (ε):  a dimensionless measure of length change
stiffness (E):  the change in stress required for a

change in strain (the slope of a stress-strain
curve)

Material    Youngs Modulus (Mpa)
Locust cuticle   0.2
Rubber   7
Human cartilage             24
Human tendon           600
Cheap plastic        1,400
Plywood      14,000
Human bone      21,000
Glass      70,000
Brass    120,000
Iron    210,000
Diamond 1,200,000

σ
(MPa)

ε

200

0       0.2       0.4      0.6

bone

hair

resilin



stress  (σ) :  the distribution of force over an area
strain  (ε):  a dimensionless measure of length change
stiffness (E):  the change in stress required for a

change in strain (the slope of a stress-strain
curve)

σ
(MPa)

ε

200

0       0.2       0.4      0.6

bone

hair

resilinσ
(MPa)

ε
0.02      0.04     0.05     0.06

60

40
 
20

Tendon

Many (most)
biological
materials are
non-linearly
elastic







stress  (σ) :  the distribution of force over an area
strain  (ε):  a dimensionless measure of length change
stiffness (E):  the change in stress required for a

change in strain (the slope of a stress-strain
curve)

σ
(MPa)

ε
0.02      0.04     0.05     0.06

60

40
 
20

Tendon

strength (σmax):  the stress at failure



stress  (σ) :  the distribution of force over an area
strain  (ε):  a dimensionless measure of length change
stiffness (E):  the change in stress required for a

change in strain (the slope of a stress-strain
curve)

σ ( M
Pa

)

ε
0.02      0.04     0.05     0.06

60

40
 
20

Tendon

strength (σmax):  the stress at failure
material     strength (MPa)
arterial wall         2
human cartilage    3
cement                   4
cheap aluminum 70
glass     100
human tendon   100
human bone     110
human hair     200
spider silk     350
titanium   1000
steel wire   3000



Biology 427

Lecture 7.  Strength and toughness of
biological materials

Recap stress, strain, stiffness and strength of
biomaterials: measures of material properties

Strength revisited and the limits to the size of
terrestrial vertebrates

Energy relations in biological materials:  toughness and
resilience

Plastic deformations: an introduction to time-dependent
material properties.



stress  (σ) :  the distribution of force over an area
strain  (ε):  a dimensionless measure of length change
stiffness (E):  the change in stress required for a

change in strain (the slope of a stress-strain
curve): a material property

Material    Youngs Modulus (Mpa)
Locust cuticle   0.2
Rubber   7
Human cartilage             24
Human tendon           600
Cheap plastic        1,400
Plywood      14,000
Human bone      21,000
Glass      70,000
Brass    120,000
Iron    210,000
Diamond 1,200,000

σ
(MPa)

ε

200

0       0.2       0.4      0.6

bone

hair

resilin



stress  (σ) :  the distribution of force over an area
strain  (ε):  a dimensionless measure of length change
stiffness (E):  the change in stress required for a

change in strain (the slope of a stress-strain
curve) a material property

σ
(MPa)

ε
0.02      0.04     0.05     0.06

60

40
 
20

Tendon

strength (σmax):  the stress at failure



Baluchitherium:
about 30 Tons
Could the foot
bones support its
weight?

σmax = 100 MPa
        = Fmax/Area

Fmax =108*Area
        = 151 104 N
 m    = 151 103Kg
        = 151 T

diameter = 14 cm = 151 10-4 m2



stress  (σ) :  the distribution of force over an area
strain  (ε):  a dimensionless measure of length change
stiffness (E):  the change in stress required for a

change in strain (the slope of a stress-strain
curve)

σ ( M
Pa

)

ε
0.02      0.04     0.05     0.06

60

40
 
20

Tendon

strength (σmax):  the stress at failure
material     strength (MPa)
arterial wall         2
human cartilage    3
cement                   4
cheap aluminum 70
glass     100
human tendon   100
human bone     110
human hair     200
spider silk     350
titanium   1000
steel wire   3000



Energy Basics for Materials

σ (M
Pa

)

0.02      0.04     0.05     0.06

60

40
 
20

ε

W            F dx
vol          A L∫=

F
o
rc
e

0.02      0.04     0.05     0.06

60

40
 
20

x

W            F dx∫=



The energy imparted is the mechanical strain
energy

σ (M
Pa

)

0.02      0.04     0.05     0.06

60

40
 
20

ε

W            F dx
vol          A L∫=U = ∫ σ dε

For Hookean materials
           σ = E ε

U = ∫ E ε dε
    =  Ε ε2/2

U = ∫ E ε dε
    =  Ε ε2/2

U = ∫ σ dσ/Ε
   = σ2/2Ε

U = ∫ σ dσ/Ε
   = σ2/2Ε



The energy imparted is the mechanical strain
energy  that can be returned or be so great as
to break the material

σ ( M
Pa

)

0.02      0.04     0.05     0.06

60

40
 
20

U = ∫ σ dε

toughness: the energy per
unit volume required to break
a material

T = ∫ σ dε

T = σ2
max /2E (if Hookean)



E (MPa)

103                      104                                     105                                   106

103

102

101

St
re

ng
th

 (M
Pa

)

bone

collagen chitin

shell
concrete

cast iron

steel
nylon

keratin

stony coral

oak

silk

fir

U = 100 MJ/m3  10                           1

0.1

0.01

0.001



The energy imparted is the mechanical strain
energy  that can be returned or be so great as
to break the material

σ ( M
Pa

)

0.02      0.04     0.05     0.06

60

40
 
20

U = ∫ σ dε

all of the energy imparted is returned

energy imparted
energy returned

= Resilience (R)



The energy imparted is the mechanical strain
energy  that can be returned or be so great as
to break the material

σ ( M
Pa

)

0.02      0.04     0.05     0.06

60

40
 
20

U = ∫ σ dε

not all of the energy imparted is returned

energy imparted
energy returned

= Resilience (R)



 The story of the pregnant (gravid) locust
•locusts are migratory
•light weight important in flight
•fertilized eggs in dehydrated
state

•live in very arid climates
•trick: bury the eggs ~ 8 cm
beneath surface

2 cm
~8cm

E = 105 MPa

U = ∫ E ε dε
    =  Ε ε2/2
    = 1011 9/2
    ∼ 5 1011 J/m3

     = 5 108 J/kg
with 1 g of abdomen
     -> 5 105 J
M = 0.005 kg
PE = Mg h
h = 107m

U = ∫ E ε dε
    =  Ε ε2/2
    = 1011 9/2
    ∼ 5 1011 J/m3

     = 5 108 J/kg
with 1 g of abdomen
     -> 5 105 J
M = 0.005 kg
PE = Mg h
h = 107m



The energy imparted is the mechanical strain
energy  that can be returned or be so great as
to break the material or be lost as a permanent
deformation (plastic deformation)

σ ( M
Pa

)

0.02      0.04     0.05     0.06

60

40
 
20

Any examples in humans?



Biology 427 Biomechanics
Lecture 8.   Visco-elasticity: time-dependent
properites of biological materials

•Recap of basic elasticity

•Differentiating fluids (viscous) from solid
(elastic) behaviors

•Experimental results for some biomaterials

•Elementary descriptions of visco-elastic
material properties.

•Comments about term project 1



E (MPa)
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U = 100 MJ/m3  10                           1

bone

collagen chitin

shell
concrete

cast iron

steel
nylon

keratin

stony coral

oak

silk

fir
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0.001



σ

ε

Recap Material Properties

stiffness    dσ/dε

strength    (σmax)

toughness   ∫σ dε

resilience    ∫ σ dε / ∫ σ dε

σ

ε
time dependent

σ

ε
plastic

5 s-1  3s-1  1s-1



Tendon, muscle, cuticle, cartilage, mucus,
hair, mesoglea, skin, all show time-
dependent properties.  They are, therefore,
vicso-elastic.

Solid Fluid

Key: how do solids and fluids respond to a shear force?

F F
ΔL

F  ~  ΔL
σ  ∼  ε
σ  = Ε ε

F ~ ΔL/Δt  ~ dL/dt
σ  ∼  dε/dt
σ  = µ dε/dt

ΔL

spring dashpot



F  ~  ΔL
σ  ∼  ε
σ  = Ε ε

F ~ ΔL/Δt  ~ dL/dt
σ  ∼  dε/dt
σ  = µ dε/dt

spring dashpot

σ

ε

time

σ

ε

time

A creep test



F  ~  ΔL
σ  ∼  ε
σ  = Ε ε

F ~ ΔL/Δt  ~ dL/dt
σ  ∼  dε/dt
σ  = µ dε/dt

spring dashpot

σ

ε

time

σ

ε

time

A stress relaxtion test



Creep characteristics of
mucus            and    cartilage

σ

ε

time

σ

ε

time

How does the stiffness vary in time?



σ

ε

time

A stress relaxtion test on the ACL

How does the stiffness vary in time?

E

time



Mesoglea (a protein polysaccharide)

wave forces :  seconds
postural forces:  minutes
tidal changes : hours



log(E)

log(time)

glassy

glass transition

entanglement plateau

equilibrium

flow

The Master Curve

We often want to develop predictive models to
how any material (structure) responds to a
load.



Creep characteristics of
mucus            and    cartilage

σ

ε

time

σ

ε

time

dashpotspring



Creep characteristics of
mucus            and    cartilage

σ

ε

time

σ

ε

time
σs = σd = σtotal
εs + εd = εtotal
µ dεd/dt = σ
   εd = σ t/µ 
 σ/E + σ t/µ = εtotal 

σs + σd = σtotal
εs= εd = εtotal
µ dε/dt + Eε = σ
ε = (1 − e-(E/µ) t)



Biology 427 Biomechanics
Lecture 9.   Models of the visco-elastic behavior of
biological materials.

•Recap visco-elasticity and time-dependent
properties

•Simple theoretical models of visco-elastic
materials

•Complex models applied to the cellular
mechanism of sensory transduction.  A tale of
two sensors.



F  ~  ΔL
σ  ∼  ε
σ  = Ε ε

F ~ ΔL/Δt  ~ dL/dt
σ  ∼  dε/dt
σ  = µ dε/dt

spring dashpot

σ

ε

time

σ

ε

time

A creep test



F  ~  ΔL
σ  ∼  ε
σ  = Ε ε

F ~ ΔL/Δt  ~ dL/dt
σ  ∼  dε/dt
σ  = µ dε/dt

spring dashpot

σ

ε

time

σ

ε

time

A stress relaxtion test



Time dependent properties of
mucus              cartilage   and   tendon

σ

ε

time time

How does the stiffness vary in time?

time
 



log(E)

log(time)

glassy

glass transition

entanglement plateau

equilibrium

flow

The Master Curve

We often want to develop predictive models to
how any material (structure) responds to a
load.



Creep characteristics of
mucus            and    cartilage

σ

ε

time

σ

ε

time
σs = σd = σtotal
εs + εd = εtotal
µ dεd/dt = σ
   εd = σ t/µ 
 σ/E + σ t/µ = εtotal 

σs + σd = σtotal
εs= εd = εtotal
µ dε/dt + Eε = σ
ε = (1 − e-(E/µ) t)



Stress relaxtion characteristics
mucus            and    cartilage

σ

ε

time

σ

ε

time

σs = σd = σtotal
εs + εd = εtotal 
σtotal = E ε (1 - e Et/µ)

σs + σd = σtotal
εs= εd = εtotal



time

σ

ε

Stress relaxation in tendon, ligament, chitin ….
no infinite spike

non-zero asymptote

We need a more general model



time

σ

ε

Stress relaxation in tendon, ligament, chitin ….

Standard linear solid σ1 = E1 ε (1 - e -E1
t/µ)

σ2 = E2 ε
σ = E2 ε  +E1 ε (1 - e -E1t/µ)

+

E1           µ

E2

+ E3 ε (1 - e E3t/µ)



Mechanoreception:  detecting motions and forces

Na+
Stretch activated channels can
transduce motion and forces
into changes in cell potential.



Stretch activated channels underlie hearing, balance,
vibration sensing in diverse animals.

auditory hair cells have stretch activated channels.







M. Frye
UW &
UCB
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Sinwave captures in vivo wing hinge deformation

a = 0.6 mm
ω = 19 Hz
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SR

stretch

tension

model
 output

time

Mechanical model predicts tension, but not SR firing dynamics



20 msec

20 msec

100 msec

SR

stretch tension



Biology 427 Biomechanics
Lecture 10.   Shape and stress: architecture in
biology.

•Recap material properties

• Cross-sectional shape:  The second moment of
area (I)

•The flexural stiffness of a structure (EI)

•Buckling and twisting

•Failure and safety factors:  many ways to
break up.



Project proposals:  due Friday, February 6

Proposals should be no more than 3 double-spaced
pages, and should address the following:

• What is your question?
• Why is your question important/interesting?
• What is known about your question? (give
background from literature*/web searches)
• How will you develop a quantitative analysis of your
problem? (you do not need to provide any equations
in the proposal, but should explain the quantitative
approach/steps you will take)

•*Read “Advice for preparing projects” on the
webpage!



time

σ

ε

Stress relaxation in tendon, ligament, chitin ….

Standard linear solid σ1 = E1 ε (1 - e E1t/µ)
σ2 = E2 ε
σ = E2 ε  +E1 ε (1 - e E1t/µ)

+

E1           µ

E2

+ E3 ε (1 - e E3t/µ)



In tension, the behavior of a structure depends only
on material properties and cross-sectional area (not
shape!):

σ = Eε = E ΔL/L
ΔL = σL/E = FL/AE Tension

TorsionBending

Compression

*Responses to other types of loads
depend on shape

--> can lead
to buckling



Beam theory treats structures like simple beams
with a cross-sectional shape and a length L

L

F
tension

compression

How can we quantify the shape of a structure?

NEUTRAL AXIS
(no tension or
compression)

y

Describe cross-sectional
shape by the distribution
of material  away from
the neutral axis

Cross-section



Neutral
axis

y = distance from neutral axis

Cross-sectional shape: second moment of area 

y

Neutral
axis

Cross-section

-stress            + stress 

y

Stress during bending
(tensile or compressive)
rises with distance
from the neutral axis



Cross-sectional shape: second moment of area 

y

Cross-section

Neutral
axis

y = distance from
neutral axis

Moment about neutral axis: (M=Fy)
δM = y(σy δA)

Find force and moment acting
on a small piece:  (F = σ A)
Force on δA = σy δA

δA

small piece of
area at a certain
distance y from
the neutral axis

M = σ/y ∫ y2 dA  = I σ/y 

I is the second moment of area

I = ∫ y2 dA 

Find the total moment
about the neutral axis:
M = ∫σ y dA
M = ∫κ y2 dA = κ ∫ y2 dA 

-stress            + stress 

y

(σ ∝ κy)

σ∝ κy
where κ is a constant 



“height” of object
contributes more
strongly to I than
width
(“higher” object
has more area
distributed away
from neutral axis)

neutral 
axis



Predicting overall bending behavior of a
structure:  EI -- Flexural stiffness

M = σ/y ∫ y2 dA =   I  σ/y

F x = I σ/y
σ = F x y/ I

σ = Ε ε ε = F x y/(E I)

EI describes the overall behavior of the beam due to BOTH
material and structural properties

x

F

y

M = F x

tension

compression



Uniformly distributed load f = FL
Moment M = Fx2/3L
Maximum moment = FL/2

Moment M = Fx
Maximum moment = FL

Predicting overall bending behavior of a
structure:  EI -- Flexural stiffness

Point load F at end of beam

Deflection of beam at point x
y = F(x4-4L3x+3L4)/(24EIL)
Maximum deflection (at tip):
ymax = FL3/(8EI)

Deflection of beam at point x
y = F(x3-3L2x+2L3)/(6EI)
Maximum deflection (at tip):
ymax = FL3/(3EI)



Tension

Bending

How do beams repond to compression?

Compression

--> can lead
to buckling



Size and shape matter in compression too!

Compressive failure (σmax)

Local buckling

D
t

Euler buckling

σL = k E  t/ D   (k ~ 0.7) 

* depends on E, wall thickness and diameter

n = 4 n = 1n = 2

* depends on EI
and length

FE = n π2 E I/L2 



Tension

Bending

Compression

--> can lead
to buckling

How do beams repond to torsion?

Torsion



Torsion involves tensile forces (outside) and
compressive forces (inside), as well as shear
forces

Torsion

Solid
shear top and bottom
in opposite directions

γ

τ = Gγ

shear
stress

shear
modulus

shear
strain

(like σ = Eε)

Torsional stiffness (like flexural stiffness) depends
on both material properties (G) and structural
properties (J) :

J = second polar moment of area
J = π/2 (ro

4 - ri
4)

θ = FrL/GJ 
where θ is angle of twist, F is tangential
applied force, and r is radius



Bones Tendon      
Tensile     Compressive

σmax, Strength (Mpa) 172 284 84

*Alexander, R.McN.  1981.  Sci. Prog. Oxf.  67:109-120

σex Dog jumping 68-80 100 84
σex Kangaroo hopping 60 90 40-80
σex Elephant running 45-69 57-85
σex Man weight lifting
σex Goose flying 50

σex Dog jumping 68-80(2-3) 100(2.8) 84(1.0)
σex Kangaroo hopping 60(3) 90(3.2) 40-80(1-2) 
σex Elephant running 45-69(2.5-4) 57-85(3.3-5)
σex Man weight lifting (1 - 1.7)
σex Goose flying 50(6) safety factor

A huge collection of material and structural properties
stiffness (E), strength (σmax), flexural stiffness (EI), torsional
stiffness (GJ), critical buckling force (FE)...

To what extent does the design of biological materials
and structures help them withstand various forces?
Safety factor *:  SF = σmax/σexpected

(for tensile/
compressive failure)



What about safety factors for other types of loading?

Structure Load/Failure Mode Factor
Cuttlefish, buoyancy chambers pressure 1.3 - 1.4
Squid, shell (pen) bending 1.3 - 1.4
Spider, dragline tension     1.5

Reptilian hindlimbs bending 5.5 - 10.8
Reptilian hindlimbs torsion 3.9 - 5.4

Mammalian bones (general) bending    2 - 6
Horse, leg bones in galloping bending     4.8
Ostrich, leg bones in running bending     2.5

Tree trunks          critical buckling  about 4
Stems, annual plants          critical buckling  about 2
Garlic, grown in windy field          critical buckling    1.78
Garlic, grown in greenhouse          critical buckling    1.03

Bird wing bones bending     2.2
Bat (microchiropteran) wing bones bending     1.4
Bat (megachiropteran) wing bones bending     3.9
Pigeon (wing) humerus bending     3.5
Pigeon (wing) humerus torsion     1.9
Pigeon wing feather shaft bending   6 - 12

lower SF in
predictable
environments?

Higher SF in longer-
lived organisms?

SF differs for
different types
of loading -
related to types
of loads
normally
encountered?

Higher SF when
exposed to a high
stress environment?



But …  there is variation in real biological materials
and loads may be unpredictable (they may vary
from the expected values).

P

stress

Alexander suggested minimizing
           Φ(n) = P(n)*F + G(n)  + U(n)
P(n)*F  = probability of failure*cost of failure
G(n) = cost of producing structure
U(n) = cost of using structure

probability of breakage:
0.0004/year  human humerus
0.0006/year  human femur
0.02/life  either humerus/femur
0.07/life  viverids humerus/femur
0.4/life  gibbons humerus/femur
0.5/life red deer antlers
0.5/life spider webs

σex

• distribution of
stresses experienced

σmax

• distribution of
strengths (in a structure
or population)

P(σex  > σmax) --> breakage!



Biology 427 Biomechanics
Lecture 11.  More on shape and stress: architecture
in biology and the design of biological structures

• Recap flexural stiffness, I, and beam examples

• Stress distributions in hip bones and tree limbs

• The design of mammalian long bones

• Design for selective failure: ripping fingernails

Talk to Tom or Stacey about your project!



θ = F r L / G J 
where θ is angle of twist, F is tangential
applied force, and r is radius

Local bucklingD

t

σL = k E  t/ D   (k ~ 0.7) 

* depends on E, wall thickness and diameter
D = outer diameter

Buckling diameter, torsion measurements...... 

Torsion

(below)

θ

F



Predicting overall bending behavior of a
structure:  EI -- Flexural stiffness

M = σ/y ∫ y2 dA =   I  σ/y

F x = I σ/y
σ = F x y/ I

σ = Ε ε ε = F x y/(E I)

EI describes the overall behavior of the beam due to BOTH
material and structural properties

x

F

y

M = F x

tension

compression

Are any of these
equations time-
dependent?

Yes!
•E can vary with time
(viscoelastic) or force
(non-linear)
• I can also change
with time if structure
deforms (squishes)



see class web page



Uniformly distributed load f = FL
Moment M = Fx2/3L
Maximum moment = FL/2

Moment M = Fx
Maximum moment = FL

Predicting overall bending behavior of a
structure:  EI -- Flexural stiffness

Point load F at end of beam

Deflection of beam at point x
y = F(x4-4L3x+3L4)/(24EIL)
Maximum deflection (at tip):
ymax = FL3/(8EI)

Deflection of beam at point x
y = F(x3-3L2x+2L3)/(6EI)
Maximum deflection (at tip):
ymax = FL3/(3EI)



W/2
x

Bending will
cause tension and
compression, but
most bones are
stronger in
compression

I = πR4/4

Stress distributions in biological beams:  
hip 

σ = F x y/I

Moment M = Fx

σ = M y/I

Where do you
think the tensile
stress is greatest?

Where is the most
likely zone for
failure?



Stress distributions in biological beams:  
tree branches

Moment M = Fx2/3L

σ = M y/I

x

σ = F x2 y/ 3 L I

I = πR4/4

Tree branches
support their
own weight,
plus the weight
of leaves, fruit,
etc.

How does the
design of
branches affect
the distribution
of bending
stresses?

x

f



How do structural
features affect
stress on bones?

 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

R
r

Mammalian long bone design:

I = π R4/4 - π r4/4 
k  = r/R (thinness ratio; thin: k -> 1) 
r = kR
I = π R4 (1 - k4)/4 

σ = F x y/I

σ = F x y/ (π R4 (1 - k4)/4 ) high k

thin bones
experience
higher stresses

thick, big bones
experience
lowest stressesσ

R

(k -> 0)thick, big bones

low k



For a given volume of
bone, how best might
we distribute it?

 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

V = πR2 L - π(kR)2 L = πR2 L (1 -k2)
R2 = V/(πL (1 -k2)) 
R4 = V2/(πL (1 -k2))2

thick, big bones

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

R
r

σ = F x y/I

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

useBut this assumes that we
can use as much material
as we want......

I = π R4 (1 - k4)/4 
k  = r/R

big radius
minimizes
stresses

(k -> 0)

   σ ~ (1 - k2)2/ (1 -k4)
σ~ 1/ (V2/(πL (1 -k2))2) (1 - k4) 
σ~ 1/I ~ 1/ R4 (1 - k4) 

σ

k

1

0 0.2 0.4 0.6 0.8 10

0.5

thin bones
minimize
stresses



 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

Really wide thin bones
(high k) would minimize
stresses for a given
volume of bone

Bone Hare Fox Lion Camel Buffalo Swan
femur 0.57 0.63 0.56 0.62 0.54 0.60
humerus 0.55 0.59 0.57 0.66 0.51 0.92

Values for k in terrestrial mammals

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thick, big bones

R
r

σ = F x y/I

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thin, wide bones

For a given volume of
bone, how best might
we distribute it?

(k -> 0)

(k -> 1)

k  = r/R

What are values of k in
mammalian long bones?



σmax = F x y/I 
        = My/I  = M R/I
     I = πR4(1-k4)/4

 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

k  = r/R

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thick, big bones

R
r

σ = F x y/I

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thin, wide bones

What is the best design for
minimum weight?

σmax = M R/(πR4(1-k4)/4)

R = {4 M/(π σmax(1-k4)}1/3

This is the radius needed for a bone to just avoid
breaking under a given bending load

(k -> 0)

(k -> 1)

We will set the limiting condition of the size of bone
that just avoids breaking

Compute the mass per
unit length of bone



mass = area*length*density (m = A L ρ)
mbone/L  = A ρbone = ρbone π R2(1-k2)

 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thick, big bones

R
r

σ = F x y/I

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thin, wide bones

k  = r/R

What is the best design for
minimum weight?
Compute the mass per
unit length of bone

  = ρboneπ {4M/(π σΒ(1-k4)}2/3(1-k2)

R = {4 M/(π σmax(1-k4)}1/3

This is the mass per unit
length of bone that will just
avoid breaking

(k -> 0)

(k -> 1)



 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thick, big bones

R
r

σ = F x y/I

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thin, wide bones

k  = r/R

What is the best design for
minimum weight?

R = {4 M/(π σmax(1-k4)}1/3

Compute the mass per
unit length of bone

mass = area*length*density (m = A L ρ)
mbone/L  = A ρbone = ρbone π R2(1-k2)

  = ρboneπ {4M/(π σΒ(1-k4)}2/3(1-k2)

This is the mass per unit
length of bone that will just
avoid breaking

m
bo

ne
/L

k

1

0 0.2 0.4 0.6 0.8 10

(k -> 0)

(k -> 1)



 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thick, big bones

R
r

σ = F x y/I

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thin, wide bones

k  = r/R

But, bone is not an empty
tube.....the marrow inside
has weight too

R = {4 M/(π σmax(1-k4)}1/3

mbone/L = ρbone π R2(1-k2)

This is the mass of marrow
per unit length

* ρmarrow = ρbone/2 

mmarrow/L  = ρmarrow π r2 = ρbone π R2k2/2

mmarrow/L 
   = ρbone π {4 M/(π σΒ(1-k4)}2/3 k2/2 m

m
ar

ro
w
/L

k

1.4

0 0.2 0.4 0.6 0.8 10

(k -> 0)

(k -> 1)



 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thick, big bones

R
r

σ = F x y/I

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thin, wide bones

k  = r/R

Compute the TOTAL mass
per unit length of bone
that just avoids
breaking.....

mbone/L = ρbone  π {4 M/(π σΒ(1-k4)} 2/3 (1-k2)

mmarrow/L = ρbone π {4 M/(π σΒ(1-k4)}2/3 k2/2

+

(k -> 0)

(k -> 1)

m
bo

ne
/L

k

1

0 0.2 0.4 0.6 0.8 10

m
m

ar
ro

w
/L

k

1.4

0 0.2 0.4 0.60

+

0 0.2 0.4 0.6 0.8 1
0

1

k

m
/L total m/L

minimum
k ~0.55-0.7



 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thick, big bones

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

thin, wide bones

Values of k for terrestrial
long bones are close to
our predictions

Bone Hare Fox Lion Camel Buffalo Swan
femur 0.57 0.63 0.56 0.62 0.54 0.60
humerus 0.55 0.59 0.57 0.66 0.51 0.92

Values for k in terrestrial mammals

0 0.2 0.4 0.6 0.8 1
0

1

k

m
/L total m/L

minimum
k ~0.55-0.7

k ~0.55-0.7

(k -> 0)

(k -> 1)

What about swan humerus?



 minimize:  Φ(n) = P(n)*F + G(n)  + U(n)

Values of k for terrestrial
long bones are close to
our predictions

minimum

cost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

usecost of
structure

probability 
of failure*

cost of failure
cost to

produce
cost to

use

Bone Hare Fox Lion Camel Buffalo Swan
femur 0.57 0.63 0.56 0.62 0.54 0.60
humerus 0.55 0.59 0.57 0.66 0.51 0.92

Values for k in terrestrial mammals

Swan humerus (wing bone)
is filled with air sacs
instead of marrow
Membranes of air sacs,
vasculature, and air have
some mass:

ρairsac = ρmarrow/500 0.2 0.4 0.6 0.8 1
0

1

k

m
/L

total m/L



Design for selective failure: anisotropy and
ripping fingernails

Nails need to be able to resist upward
bending forces and prevent damage to
vulnerable nail bed at base

Keratin fibers can be aligned in one
direction to provide material
ANISOTROPY (different properties in
one direction vs. another)

Longitudinally oriented keratin fibers
would provide more stiffness to upward
bending, but this might propagate tears
directly to the nail bed



Nails need to be able to resist upward
bending forces and prevent damage to
vulnerable nail bed at base

Design for selective failure: anisotropy and
ripping fingernails

Concave shape provides STRUCTURAL ANISOTROPY
(makes nails harder to bend upward)

Thick middle layer of nails has
transversely-oriented keratin fibers that
deflect tears to the side of the nail,
providing MATERIAL ANISTROPY (makes
easier to tear to side than to base)

How do tears
propagate in
fingernails?

*Farren et al. (2004)



Biology 427 Biomechanics
Lecture 12.  Less simple structures:  dealing with
anisotropy, inhomogeneity, and scaling in biological
structures.

• Recap design of mammalian long bones and ripping
fingernails

• Insect wing venation patterns and structural
anisotropy

• Putting together the pieces:  using finite element
models to understand complex structures

• Bending in just the right places: inhomogeneity in
biological structures



                                                                                                                                                            FFFF (n) = P(n)*F + G(n)  + U(n)

cost of
structure

probability 
of failure*

cost of failure

cost to
produce

cost to
usecost of

structure

probability 
of failure*

cost of failure

cost to
produce

cost to
use

Values of k for long bones are
close to our predictions for a
strong structure that minimizes
mass per unit length

Bone Hare Fox Lion CamelBuffalo Swan
femur 0.57 0.63 0.56 0.62 0.54 0.60
humerus 0.55 0.59 0.57 0.66 0.51 0.92

Values for k in terrestrial mammals

0 0.2 0.4 0.6 0.8 1
0

1

k

m
/L total m/L

minimum
k ~0.55-0.7

minimum

0 0.2 0.4 0.6 0.8 1
0

1

k
m

/L

terrestrial mammals: swan humerus:

total m/L



R
r k  = r/R

high k
ssss

R
low k

Scaling in biological
structures:  a simple
matter of getting bigger?

structures along each
line scale isometrically

* Many biological structures do not
scale isometrically because forces
do not scale isometrically

i.e. Euler buckling: FE = n pppp2 E I/L 2

critical buckling force goes as
1/L2, so longer columns will
buckle at a lower relative force
--> elephant vs. mouse legs

isometric scaling:  structures retain same relative
proportions as they become larger

1

1.51.5

2

33

*structures may be scaled to
provide a similar functional
performance (i.e. similar
degree of bending) instead of
remaining geometrically
similar



Nails need to be able to resist upward

bending forces and prevent damage to
vulnerable nail bed at base

Design for selective failure: anisotropy and
ripping fingernails

Concave shape provides STRUCTURAL ANISOTROPY
(makes nails harder to bend upward)

Thick middle layer of nails has

transversely-oriented keratin fibers that
deflect tears to the side of the nail,
providing MATERIAL ANISTROPY (makes
easier to tear to side than to base)

How do tears
propagate in
fingernails?

*Farren et al. (2004)



Insect wings are flexible structures that are flapped
through the air up to several hundred times per minute!



Insect wings deformations may affect force
generation and aerodynamic efficiency

Does insect wing structure control passive shape changes?

How are wing deformations controlled during flight?







Odonata  (dragonflies, damselflies)

Isoptera  (termites)

Neuroptera  (lacewings)

Diptera  (flies)

Lepidoptera  (moths, butterflies)

Hymenoptera  (bees,wasps)

Insect wings show enormous phylogenetic diversity in venation pattern       Is insect wing stiffness related to venation pattern?     



Quantify wing venation pattern in 16 species from 6 orders

Lestes spp. (damselfly)

Calliphora spp. (blow fly)



Quantify wing venation pattern in 16 species from 6 orders



+

percent vein area
(vein area/total area)

vein thickness/span
((vein area/total length)/span)

Quantify wing venation pattern in 16 species from 6 orders



percent vein area
(vein area/total area)

vein thickness/span
((vein area/total length)/span)

log(vein intersections)

Quantify wing venation pattern in 16 species from 6 orders

+



percent leading edge veins

percent vein area
(vein area/total area)

(lead vein area/total vein area)

vein thickness/span
((vein area/total length)/span)

log(vein intersections)

Quantify wing venation pattern in 16 species from 6 orders

+ 

+



percent leading edge veins

percent vein area

log(vein intersections)

leading edge vein density

(vein area/total area)

(lead vein area/total vein area)

(lead vein area/total lead area)

vein thickness/span
((vein area/total length)/span)

Quantify wing venation pattern in 16 species from 6 orders

+ 

+

+



E = Young’s modulus (material properties)

force (F)

*Flexural stiffness (EI)

I = second moment of area 
      (cross-sectional geometry)

beam length (L)

Treat the wing as a 2-D beam to measure overall stiffness



Treat the wing as a 2-D beam to measure overall stiffness

E = Young’s modulus (material properties)

force (F)

*Flexural stiffness (EI)

I = second moment of area 
      (cross-sectional geometry)

beam length (L)

spanwise

chordwise

displacement (d)

EI
FL

=
3

3d



wing

sensor

flexible beam

micrometer

Measuring force and wing tip displacement

EI
FL

=
3

3d



wing

sensor

flexible beam

micrometer

Measuring force and wing tip displacement

EI
FL

=
3

3d
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Spanwise and chordwise stiffness increase with wing size

0.0020.002
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Is a species’ position above or below this relationship related to venation pattern?

0.002



time (million years)

-350    -300      -250     -200     -150    -100       -50         0  

50
83

146

178

235

146

112

135

157

250

330

310

280

270

250

Calculate independent contrasts of wing stiffness residuals and venation traits

Benton (1993), Maddison (1995a,b), Trueman and Rowe (2001), Wiegmann and Yeates (1996)



percent
vein area

log(vein
intersections)

percent
lead veins

lead edge
vein density

chordwise EI
residual

spanwise EI
residual

Is overall wing stiffness correlated with venation pattern?

(*correlations between
 independent contrasts of traits)

vein thick
per span

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

NO



Despite enormous variation
in the arrangement of
wing veins, overall wing
stiffness is independent
 of venation pattern!



Variation in wing stiffness is dominated by wing size
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Why is insect wing stiffness so strongly related to wing size?
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 y = 2.02x
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FL
=

3

3d

steel shim

• EI is a measure of cross-sectional shape ONLY (length independent)
But, insect wings get wider as they get longer....   w µ  L

I = wt3/12

EI µ  wt3 

Perhaps scaling of wing stiffness provides functional, rather than
geometric similarity (i.e. constant dddd/L)?......

• How does thickness scale with wing length?
-- if thickness scales isometrically with length, EI µ  L4

-- if thickness is independent of length (single layer of cuticle), EI µ  L



What is the source of spanwise-chordwise anisotropy in wings?
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Finite element model of a moth wing

Divide wing into small, interconnected elements (flat plates)
•  balance forces and moments around each simple plate and sum plates to find
   how whole complex structure behaves



Are wing veins the source of spanwise-chordwise anisotropy?

A A A A A A A

F
F
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F

F

FEM model with leading edge veins only
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E of model veins (Nm-2)

E of model membrane = 1E+9 Nm-2

F
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F

F

F

F

F

A
A

A

A

A

A

A

FEM model with all veins

spanwise

chordwise

• Increase E of wing vein elements above
that of surrounding membrane elements (to
mimic increased I of tubular veins)
• Apply a point force to the tip of the wing
• Record computed tip displacement
• Calculate EI of whole model wing

Leading edge veins generate spanwise-chordwise anisotropy

F

A



Manduca sexta Aeshna multicolor

Are insect wings really homogeneous along their length?



Possible patterns of spatial variation in wing stiffness
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exponential
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infinite•



F

L

heterogeneous beam

Calculating regional variation in stiffness

force (F)

beam length (L)
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d dx
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EI x
M x

d dx
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= 2 2d

d (x)

x

homogeneous beam



wing

Measuring displacement continuously along a wing

45



loaded
wing

x

y

z

unloaded
wing

Changes in the y-direction of the picture correspond to
bending in the z-direction of the wing
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constant          [EI(x) = k]

linear              [EI(x) = m x + b]

exponential     [EI(x) = c*expax]

polynomial      [EI(x) = px2+qx+r]

EI

x

EI

EI

x

EI

x

simplex
minimization

Solve for the EI distribution that best fits 
the measured wing displacement
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Spanwise wing stiffness declines exponentially in Manduca
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Chordwise wing stiffness decline exponentially in Manduca
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Spanwise and chordwise stiffness decline exponentially in both
hawkmoths and dragonflies

Manduca sexta
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Create a FEM wing in which material properties decline exponentially, but veins are
stiffer than membranes to provide anisotropy

memb12
memb11
memb10
memb9
memb8
memb7
memb6
memb5
memb4
memb3
memb2
memb1
vein12
vein11
vein10
vein9
vein8
vein7
vein6
vein5
vein4
vein3
vein2
vein1

How does an exponential decline in stiffness affect wing bending?

*adjust material properties of both models so average tip and trailing edge displacement
is the same as in a real Manduca wing

membrane

vein

homogeneous wingexponential wing



How does the spatial pattern of stiffness in model wings
compare to real Manduca wings?

male Manduca dorsal

male Manduca ventral

lo
ca
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distance along span/chord (m)

homogeneous wing

exponential wing
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How do the model wings respond to a static load?

homogeneous wing exponential wing

point force
at tip

pressure force
on lower surface



exponential winghomogeneous wing

ro
ta

tio
n 

at
 b

as
e

time

How do the model wings respond to a dynamic load?

An exponential decline in stiffness localizes
wing bending to the tip and trailing edge of
wings, where force production is most sensitive
to changes in wing shape!



Biology 427 Biomechanics
Lecture 13.   Finite elements, joints and skeletons

•Recap flexural stiffness (EI), design for
minimum weight, and stress distributions.

•Finite Element Analyses in Evolution

• Motion is permitted at joints with several
degrees of freedom and  low EI

•Mechanical advantage and speed ratio (those
moment (or torque) balances)

•Rhinogrades: an enigmatic taxon



Project proposals:  due Friday, February 6

Proposals should be no more than 3 double-spaced
pages, and should address the following:

• What is your question?
• Why is your question important/interesting?
• What is known about your question? (give
background from literature*/web searches)
• How will you develop a quantitative analysis of your
problem? (you do not need to provide any equations
in the proposal, but should explain the quantitative
approach/steps you will take)

•*Read “Advice for preparing projects” on the
webpage!



Numerical experiments on shell shapes

•Imbue them with mechanical characteristics that
represent extant shells  (Young’s modulus = 1 GPa )

•Place point forces that mimic crushing predators.

•Examine the stress distribution.

•Explore how coiling affects stress distribution.

Does curvature reduce the stresses that result
from predators?

•Create virtual shells (a la Raup)



E = 1 GPa
t = 0.5 mm

d = 2 cm

z
xx

y

1 N

-1 N

\How do size and shape
affect the magnitude and
distribution of stress?

Finite Element Analysis
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Brief review of skeletons

•Mechanical support
•Protection
•Force transmission
•Energy storage

• Rigid and flexible elements: Endo- and exoskeletons
•Fluid filled cavities:  hydraulic skeletons
•Solid muscle: muscular hydrostats
•Protein filaments: cytoskeleton



Rigid elements connected by joints with
(potentially) six degrees of freedom

Commonly 1 - 3 degrees/joint. 
 Multiple single degree joints give 

x

y

z

ry

rx

rz

Requires  low
resistance to
distortion
(low EI,
lubrication)



cruciate ligaments
constrain knee motions

synovial membrane

articular cartilage

weeping lubrication

load bearing region wringing out

coefficient of friction  is
about 0.003
good ball bearings
~0.02





Fin

Fout

Lo

Lin

At static equilibrium
Min = Mout
Fin Lin = Fout Lout 
Fout/Fin = Lin/Lout 
= Mechanical Advantage

Lin dθ/dtLout dθ/dt

The speed ratio

Lout dθ/dt
Lin dθ/dt
 
= Lout/Lin





Biology 427 Biomechanics
Lecture 14.   Structural systems and adhesives

• Recap skeletal systems, joints, mechanical
advantage, speed ratio

• Worms, tongues and tentacles:  Hydrostats
and muscular hydrostats for support and
movement

• Staying put:  Mechanisms of adhesion



Brief review of skeletons
•Mechanical support
•Protection
•Force transmission
•Energy storage

• Rigid and flexible elements: Endo-
and exoskeletons
• Fluid filled cavities:  hydraulic

skeletons
• Solid muscle: muscular
hydrostats



Functions of skeletal systems
•Mechanical support
•Protection
•Force transmission
•Energy storage

Elements of skeletal systems resist
compression, tension or both

struts - can take both tension
and compression (i.e. bones)

ties - resist tension only (i.e.
tendons)

incompressible elements
(i.e. water-filled cavities or
muscle)

antagonistic
muscles/materials are
needed to return
elements to original
position after a motion



Categorizing supportive systems

1. Tensile systems - built to resist
tension only (i.e. algal stipes, fruit
stems, toe-pad setae)

2. Strutted systems
∑ single or branched struts (i.e. tree

branches, coral)

∑ articulated struts (i.e. vertebrate

skeletons, insect exoskeletons)



Articulated struts can have multiple linkages

slingjaw wrasse

∑ 11 jaw linkages

∑ protrusion to 65% head length

in 1/30 s
∑ acceleration = 100 m/s2

∑ snout speed = 5 mph



Human knee: cruciate ligaments
constrain knee motions

Most biological joints contain 1-3 rotational
degrees of freedom

Movement at joints
requires  low resistance
to distortion
(lubrication, low EI)x

y

z

ry

rx

rz articular cartilage

WEEPING LUBRICATION

load bearing region
wringing out

synovial fluid



Most biological joints contain 1-3 rotational
degrees of freedom

Movement at joints
requires  low resistance
to distortion
(lubrication, low EI)x

y

z

ry

rx

rz

Arthroidal membrane (untanned insect cuticle - low EI)



Most biological joints contain 1-3 rotational
degrees of freedom

x

y

z

ry

rx

rz

*damselflies have mobile resilin wing
vein joints (Gorb, 1999)



Fin

Fout

Mechanical Advantage

Min = Mout

Fin Lin = Fout Lout
 
Fout/Fin = Lin/Lout 

Speed Ratio

=  Lout dqqqq/dt

     Lin dqqqq/dt
 
= Lout/Lin

Speed vs. Strength in articulated support systems

qqqq

Lo

Lin

* Lin is
perpendicular
line from Fin to
joint



Speed vs. Strength in articulated support systems

Horse: 
low mechanical advantage
high speed ratio

FAST

Lin/Lout =
small

Lin/Lout =
big

Armadillo: 
high mechanical advantage
low speed ratio

STRONG



2. Strutted systems
∑ single or branched struts (i.e. tree

branches, coral)
 ∑ articulated struts (i.e. vertebrate

skeletons, insect exoskeletons)

Categorizing supportive systems

1. Tensile systems - built to resist
tension only (i.e. algal stipes, fruit
stems, toe-pad setae)



2. Strutted systems
∑ single or branched struts (i.e. tree

branches, coral)
 ∑ articulated struts (i.e. vertebrate

skeletons, insect exoskeletons)

 ∑ dispersed struts (i.e. dispersed

spicules in sponges)

Categorizing supportive systems

1. Tensile systems - built to resist
tension only (i.e. algal stipes, fruit
stems, toe-pad setae)



Categorizing supportive systems

1. Tensile systems - built to resist tension only (i.e. algal
stipes, fruit stems, toe-pad setae)

2. Strutted systems

∑ single or branched struts (i.e. tree branches, coral)

 ∑ articulated struts (i.e. vertebrate skeletons, insect

exoskeletons)
 ∑ dispersed struts (i.e. dispersed spicules in sponges)

3. Internally pressurized systems

 ∑ hydrostats - watery-filled cavities under internal

pressure (i.e. worms, plant stems)



A very quick introduction to fluids and pressure.....

chamber filled with
gas molecules

lower volume =
higher pressure

PV = nRT

assume constant
if no change in
temperature

•pressure and volume
inversely proportional
in gases

P ª 1/V



Hydrostats are fluid-filled structures under
internal pressure

∑ pressurized fluid exerts an outward force on the membrane

(membrane is in tension)

∑ fluid is essentially incompressible, so hydrostats can

behave like “solid” structures that muscles can act upon

∑ membrane exerts an inward force on the fluid



Biological hydrostats are often cylindrical

longitudinal
muscles make

shorter and fatter



Biological hydrostats are often cylindrical

longitudinal
muscles make

shorter and fatter

circumferential
muscles make

longer and skinnier



Biological hydrostats are often cylindrical

longitudinal
muscles make

shorter and fatter

circumferential
muscles make

longer and skinnier

radial muscles make
walls skinnier



Shape changes in hydrostats can drive locomotion
or provide support

Circumferential
stress:
sC = DPr/t

Longitudinal
stress:
sL = DPr/2tDP = pressure difference

t

r

*smaller cylinders can withstand
relatively larger pressure differences

*cylinders with thicker walls can
withstand larger pressure differences

But...
this means cylinders will
bulge outwards twice as
fast as they will lengthen



Hydrostat behavior can be controlled by tension-
resisting fibers in the  outer membrane

longitudinal and
circumferential fibers
∑cylinder resists compression
and tension, high flexural
stiffness
∑ local buckling with large
compressive loads
∑ low resistance to torsion

helical fibers
∑lengthens and shortens
smoothly, bends more easily
∑ less prone to local
buckling
∑ high resistance to torsion
∑ more common in biological
systems



The angle of helical fibers determines the behavior of
fiber-reinforced hydrostats

         length
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 Response to increased
  internal pressure

no shape change

shorter and fatter

longer and thinner

55∞

<55∞

>55∞

fiber
angle

maximum volume at
fiber angle of 55∞



 Response to increased
  internal pressure

no shape change

shorter and fatter

longer and thinner

55∞

<55∞

>55∞

fiber
angle

The angle of helical fibers determines the behavior of
fiber-reinforced hydrostats
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Limp worms - long,
flat, unsegmented, i.e.
nemertean worms

• Lie in flaccid region because not circular cylinders (not full volume)

• Contraction of longitudinal muscles makes shorter and more round

• Contraction of circumferential muscles makes longer and more round
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The angle of helical fibers determines the behavior of
fiber-reinforced hydrostats

 Response to increased
  internal pressure

no shape change

shorter and fatter

longer and thinner

55∞

<55∞

>55∞

fiber
angle

     length     Stiff worms - unsegmented
nematodes, or roundworms

• Strong cuticle, round cross-section, LONGITUDINAL MUSCLES ONLY
• Ascaris (intestinal parasite) has a fiber angle of 75∞

muscles

• Because volume cannot change, contraction generates pressures of up to 30
kPa - worms also get a little shorter

fiber angle

 • Recoil of fibers to lower angle antagonizes the action to restore shape
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• Pressure rises and fluid is expelled into ampulla --> foot retracts

retraction

 Response to increased
  internal pressure

no shape change

shorter and fatter

longer and thinner

55∞

<55∞

>55∞

fiber
angle

What if hydrostat volume can change?

Tube feet of starfish

• Tube foot has longitudinal muscles only and fibers at an angle of ~67∞

• Contraction of longitudinal muscles makes shorter, but fiber angle resists
shortening

• When ampulla contracts, fluid is expelled back into tube foot and foot extends

extension
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 Response to increased
  internal pressure

no shape change

shorter and fatter

longer and thinner

55∞

<55∞

>55∞

fiber
angle

What if hydrostat volume can change?

Squid mantle

• Squid mantle has circumferential muscles only and fibers at an angle of ~25∞

• Contraction of circumferential muscles tends to extend mantle

• Extension at low fiber angle implies a reduction in volume

• Water squirts from mantle and squid accelerates in opposite direction

water out

squid
forward



Do any biological structures use longitudinal and
circumferential fibers instead of helical?

longitudinal and circumferential
fibers
∑cylinder resists compression and
tension, high flexural stiffness

helical fibers
∑lengthens and shortens smoothly,
bends more easily
∑more common in biological
systems

Mammalian penises depend on hydrostatics for
functioning, and fibers run longitudinally and
circumferentially, not helically

* Fiber orientation provides high stiffness and
minimizes shape changes and compression



Categorizing supportive systems

1. Tensile systems - built to resist tension only (i.e. algal
stipes, fruit stems, toe-pad setae)

2. Strutted systems

∑ single or branched struts (i.e. tree branches, coral)

 ∑ articulated struts (i.e. vertebrate skeletons, insect

exoskeletons)
 ∑ dispersed struts (i.e. dispersed spicules in sponges)

3. Internally pressurized systems

 ∑ hydrostats - watery-filled cavities under internal

pressure (i.e. worms, plant stems)

 ∑ muscular hydrostats - contraction of one group of

muscles causes extension of another group (i.e. trunks,
tentacles and tongues)



Muscular hydrostats rely on the fact that muscles
themselves are incompressible

Muscles wrap around each other
∑ Contraction of one group
causes extension of the other
because volume cannot change

squid tentacle lizard tongue
elephant

trunk



What if you don’t want to go anywhere?  How can
you stay put just where you are?

Attachments may be permanent or temporary, and must resist forces
that are often quite large (i.e. gravity, wind and wave currents)

Attachments may fail in:

(less of a
problem)

(more of a
problem)

compression

usually only fails if
reaches breaking stress



What if you don’t want to go anywhere?  How can
you stay put just where you are?

Attachments may be permanent or temporary, and must resist forces
that are often quite large (i.e. gravity, wind and wave currents)

Attachments may fail in:

(less of a
problem)

(more of a
problem)

shear

compression

surface irregularities
help resist shearing



What if you don’t want to go anywhere?  How can
you stay put just where you are?

Attachments may be permanent or temporary, and must resist forces
that are often quite large (i.e. gravity, wind and wave currents)

Attachments may fail in:

(less of a
problem)

(more of a
problem)

shear

tension

compression

more difficult to resist
∑ interdigitating attachments can convert

tension to shear - i.e. tendon and bone



What if you don’t want to go anywhere?  How can
you stay put just where you are?

Attachments may be permanent or temporary, and must resist forces
that are often quite large (i.e. gravity, wind and wave currents)

Attachments may fail in:

(less of a
problem)

(more of a
problem)

shear

tension

peel

compression

difficult to resist because concentrates
force into a small area (“peel line”)
• tapering disk of attachment with
deformable periphery may help avoid
stress concentration on edges



Methods of Adhesion

• Interlocking devices - hooks, spines or claws



• Interlocking devices

• Suction - adhesion depends on pressure difference
between fluid inside suction cup and atmosphere

Methods of Adhesion



• Extruded goo - glue, mucus etc. that fixes animal to
substrate
 - Stefan adhesion - thin layer of viscous fluid resists shear

• Interlocking devices

Methods of Adhesion

• Suction

Methods of AdhesionMethods of Adhesion



Methods of Adhesion

• Interlocking devices

Methods of Adhesion

• Suction

• Extruded goo

• Capillary action -
thin layer of water
between two surfaces
resists pulling apart
because surface
tension of water acts
to reduce air-water
interface



Methods of Adhesion

• Interlocking devices

Methods of Adhesion

• Suction

• Extruded goo

• Capillary action

• Intermolecular forces
   - electrostatic attraction - interaction between
charged ions
   - polar interactions - attraction between molecules
with a charge separation (i.e. hydrogen bonds in H2O)
   - van der Waals forces - transient interactions
between positive and negative portions of molecules
as electrons rotate to opposite sides of orbits



Geckos can run upside down, accelerate on polished
glass, and hang from one toe.......

How do gecko feet adhere to surfaces so well?



Huge diversity of gecko feet.....





• Interlocking devices

• Suction

• Extruded goo

• Capillary action

• Intermolecular forces
   - electrostatic attraction

   - polar interactions
   - van der Waals forces

How do gecko feet adhere to surfaces so well?

�no hooks, can stick on perfectly smooth
surface



• Interlocking devices

• Suction

• Extruded goo

• Capillary action

• Intermolecular forces
   - electrostatic attraction

   - polar interactions
   - van der Waals forces

How do gecko feet adhere to surfaces so well?

�no hooks, can run on perfectly smooth
surface

�dead geckos remain stuck to a wall in a vacuum (no
pressure difference for suction to function)

�no glands in feet, no footprints on surfaces

�toes are hydrophobic, stick equally
well to hydrophobic and hydrophilic surfaces

�works in ionized environment
�works on nonpolar surface

??????





Setae

1 seta
Spatulae


