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Phase response characteristics of model neurons determine which
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Abstract. In order to assess the relative contributions to
pattern-generation of the intrinsic properties of individual
neurons and of their connectivity, we examined a ring cir-
cuit composed of four complex physiologically based os-
cillators. This circuit produced patterns that correspond to
several quadrupedal gaits, including the walk, the bound,
and the gallop. An analysis using the phase response curve
(PRC) of an uncoupled oscillator accurately predicted all
modes exhibited by this circuit and their phasic relationships
– with the caveat that in certain parameter ranges, bistabil-
ity in the individual oscillators added nongait patterns that
were not amenable to PRC analysis, but further enriched the
pattern-generating repertoire of the circuit. The key insights
in the PRC analysis were that in a gait pattern, since all
oscillators are entrained at the same frequency, the phase
advance or delay caused by the action of each oscillator on
its postsynaptic oscillator must be the same, and the sum
of the normalized phase differences around the ring must
equal to an integer. As suggested by several previous stud-
ies, our analysis showed that the capacity to exhibit a large
number of patterns is inherent in the ring circuit configura-
tion. In addition, our analysis revealed that the shape of the
PRC for the individual oscillators determines which of the
theoretically possible modes can be generated using these
oscillators as circuit elements. PRCs that have a complex
shape enable a circuit to produce a wider variety of patterns,
and since complex neurons tend to have complex PRCs, en-
riching the repertoire of patterns exhibited by a circuit may
be the function of some intrinsic neuronal complexity. Our
analysis showed that gait transitions, or more generally, pat-
tern transitions, in a ring circuit do not require rewiring the
circuit or any changes in the strength of the connections.
Instead, transitions can be achieved by using a control pa-
rameter, such as stimulus intensity, to sculpt the PRC so that
it has the appropriate shape for the desired pattern(s). A tran-
sition can then be achieved simply by changing the value of
the control parameter so that the first pattern either ceases to
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exist or loses stability, while a second pattern either comes
into existence or gains stability. Our analysis illustrates the
predictive value of PRCs in circuit analysis and can be ex-
tended to provide a design method for pattern-generating
circuits.

1 Introduction

A central problem in neuroscience is to determine the rel-
ative contributions of network connectivity and of intrinsic
neuronal properties to the activity of neural circuits. Stud-
ies in computational neuroscience tend to fall into two cate-
gories: those that emphasize network connectivity and there-
fore utilize simplified point-neuron models, and those that
emphasize the intrinsic biophysical properties of real neu-
rons. The best approach depends upon which details are im-
portant to the understanding of the particular phenomenon
under study. In this study, we have focused on a minimal
model of quadrupedal gait generation as an example of an os-
cillatory network underlying a biological rhythm; however,
the analytical methods developed herein generalize to any
system for which the basic assumptions of phase response
curve theory hold (see Sect. 3.2).

In our minimal model, the circuit controlling the move-
ment of a single leg is represented by a single oscilla-
tor. The individual oscillators associated with each leg are
responsible for the dynamics of leg movement, but this
study is concerned only with inter-oscillator (hence, in-
terlimb) coupling and coordination. Ring geometries have
been utilized extensively in biophysical modeling studies
(Collins and Stewart 1994), and previous studies have shown
that a simple ring circuit is capable of generating gait-like
patterns (Collins and Stewart 1993; Collins and Richmond
1994) provided that the two front legs (and the two hind
legs) are represented by nonadjacent oscillators in the ring
configuration (Fig. 1). The previous studies used simple os-
cillators, such as the Van der Pol oscillator, as their circuit
elements, and did not produce the full range of gaits as-
sociated with quadrupeds. For example, a gallop was not
observed, only the more symmetric bound, and a trot was
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Fig. 1a,b. Network configuration.a Wiring diagram for the circuit:filled
circles indicate inhibitory synapses. The phase delay between a postsynaptic
oscillator and its presynaptic oscillator is denotedφi, wherei refers to the
presynaptic one.b To associate patterns of network activity with particular
quadrupedal gaits, each oscillator is mapped onto a leg, either left front
(LF), right front (RF), left hind (LH), or right hind (RH)
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Fig. 2. Quadrupedal gaits. The stick figures may be interpreted as a
quadruped viewed from above (adapted from Alexander 1984). The phasic
relationships between the legs in these common gaits are indicated by the
θi, where the phase of the LF leg was arbitrarily set to zero. For example, a
θ value of 0.5 indicates that the associated leg is half a cycle, or 180o, out
of phase with the LF leg. A walk corresponds to clockwise rotation around
the ring (Fig. 1), and the leg sequence LF-RH-RF-LH. In a trot, diagonal
legs move together, or nearly so, and are half a cycle out of phase with
the other pair. In a bound, the front legs move together, half a cycle out of
phase with the hind legs. A gallop is similar to a bound, but the front legs
are slightly out of phase with each other, as are the hind legs

obtained only by making the system nonautonomous due to
the addition of an extrinsic sinusoidal drive. To determine
whether a more complex oscillator with identical network
connectivity would produce similar or qualitatively differ-
ent patterns, we utilized a four variable neuronal model that
captured a significant amount of the complexity of a real
bursting neuron (for a complete set of equations see Butera
et al. 1996).

A quadruped can move using a number of different gaits.
These gaits are distinguished by both the duty cycle, which
is the fraction of time a leg spends on the ground, and the
phasic order of leg movement, or relative phase. This study
adopts the convention of characterizing a gait by its normal-
ized relative phases (Alexander 1984)θi. The relative phase
for a given leg is the fraction of a step cycle, or period, by

which the initiation of a step in the given (ith) leg follows
that in the arbitrarily chosen reference leg. This convention
assumes that each leg may be treated as a single functional
unit, or oscillator (Shik and Orlovsky 1965; Grillner 1975).
A quadruped typically changes gaits as its speed is increased;
for example, in a cat or a horse the typical sequence as speed
is increased is to proceed from a walk to a trot to a gallop.

The phasic relationships between these gaits are shown
in Fig. 2, as well as the phasic relationships in a bound.1 The
walk is characterized by the sequence left front (LF), right
hind (RH), right front (RF), left hind (LH), with each leg
one quarter of a period out of phase with the preceding leg.
In the trot, pairs of diagonal legs move in phase with each
other and half a period out of phase with the other diagonal
pair, whereas in the bound, the front legs move together and
half a period out phase with the hind legs. The gallop is
similar to the bound, but homologous contralateral legs are
not exactly in phase with each other.

Other quadrupeds can exhibit numerous additional gaits
(Gambaryan 1974; Hildebrand 1976, 1977), such as the
pronk (or jump or gambol), in which all four legs are in
phase, the lateral walk (sometimes called a reverse or back-
wards or diagonal walk) in which the sequence of footfalls
is reversed from the more common walk, and a pace, an
intermediate-speed gait like the trot in which ipsilateral legs
are in phase, and in antiphase with the homologous con-
tralateral leg (see Appendix for the relative phases of many
gaits).

An important issue that this paper addresses is the na-
ture of gait transitions. Collins (1995) identified two types
of modeling studies distinguished by the manner in which
gait transitions are generated: (1) by changing the relative
strength (including changes to or from a synaptic weight of
zero) or polarity of the couplings in a central pattern gen-
erator (CPG), thus producing different circuits in order to
produce different gaits, or (2) by changing the driving signal
for the CPG, thus using the same circuit to produce different
gaits (see Sect. 4). Studies of spinal cats have shown that co-
ordinated patterns of stepping can be generated at the level
of the spinal cord (Halbertsma et al. 1976). Other studies
have shown that the patterns can be activated or modulated
by descending influences from the mesencephalic locomotor
region (Shik et al. 1966; Shik and Orlovsky 1976) in fact,
the application of increasingly higher levels of current to
this region induces gait changes in a cat on a treadmill from
a walk to a trot to a gallop. The most commonly proposed
scheme for achieving gait transitions is to change the pat-
tern of interlimb connectivity (Stafford and Barnwell 1985;
Schoner et al. 1990; Yuasa and Ito 1990); the underlying as-
sumption is that the tonic and phasic input from the central
nervous system (CNS) and/or from sensory feedback modu-
lates the weights of the connections between limbs. Another
approach (Collins and Richmond 1994) is that the tonic and
phasic input itself, either from the CNS or from sensory feed-
back, is sufficient to induce transitions without any accom-
panying weight changes. Although the physiological basis
of gait transitions remains to be determined experimentally,

1 Several authors have idealized the gallop as a bound (Stafford and
Barnwell 1985; Schoner et al. 1990; Collins and Richmond 1994), but we
have treated them as separate gaits.
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we will show that neither changes in interlimb coordination
nor changes in phasic input are required, but that changes in
tonic input alone could be sufficient to cause observed gait
transitions if the individual oscillators associated with each
leg have the appropriate phase response characteristics.

In this study, the constant, nonoscillatory input to the
individual oscillators is represented byISTIM , the external
stimulus current; all oscillators receive the same external
stimulus current.ISTIM is a key parameter in the model
of the uncoupled oscillator because it can drive its activity
from hyperpolarized silence at sufficiently negative values,
to bursting at an intermediate range of values, to tonic depo-
larization, or beating, at the most depolarized values (Fig. 3).
In a physiological sense, an increase inISTIM could be in-
terpreted as an increase in the intensity of the stimulation
of the CPG from higher centers, such as when an animal
desires to increase its speed. Alternatively, an increase in
ISTIM could be interpreted as an increase in intensity of
some sensory feedback signal, such as that which might be
received by the CPG with increased speed of a treadmill on
which an animal is stepping.

Previous studies have shown that complexity manifested
as the capacity to generate multiple patterns of activity is in-
herent in the ring pattern of connectivity (Collins and Stew-
art 1993, 1994; Collins and Richmond 1994). In the present
study, we incorporate additional complexity in the form of
physiologically-based intrinsic complexity of the circuit el-
ements (see Sect. 2). Yet another source of complexity in
our model is that the individual oscillators are bistable for a
range of values ofISTIM . Specifically, at constant parame-
ter values (including that ofISTIM ), an individual oscillator
can display either tonically depolarized activity in which the
average spike frequency is always above zero, or bursting
activity in which the spike frequency exceeds zero during
bursts but is zero in the hyperpolarized interval between
bursts. In order to understand and predict some of the oscil-
latory modes that can be generated in a ring configuration,
we employed phase response curves, also known as phase-
resetting curves.

2 Methods

The circuit simulator was written in C but employed a fifth-
order, implicit, variable step size Runge-Kutta method sub-
routine (Hairer and Wanner 1991) written in Fortran. The
simulations were compiled and run on both Sun Sparc2 and
Sparc20 Unix workstations. The model that we employed is
referred to by Butera et al. (1996) as the reduced model, and
it has four state variables: membrane potential (V ), intracel-
lular calcium concentration (c), average spike frequency (q),
and the activation (s) of the current that is the key deter-
minant of bursting activity. Although the model does not
produce discrete spikes, the average spike frequencyq is a
function of the other three variables. Moreover, the rates of
change ofs andc are in turn dependent onq. This feedback
effect enhances the complexity of the response of the os-
cillator to changes in inputs. The equations and parameters
for each of the four individual oscillators are identical to
those given by Butera et al. (1996) for their reduced model,
except that terms that depend implicitly or explicitly on the

total current were modified2 to include the synaptic current
that coupled the oscillators:

ISY N (V, qPRE) =

{
gSY N qPRE(V − ESY N ) if qPRE ≥ 0
0 otherwise

where the synaptic strengthgSY N was set to 0.001µS/Hz,
qPRE is the spike frequency (Hz) in the presynaptic neuron,
V is the membrane potential in the postsynaptic neuron, and
the reversal potentialESY N for the synaptic current was
set to−70 mV to produce inhibitory connections. The units
for gSY N are inµS/Hz because the synaptic current in the
postsynaptic neuron is a function of the spike frequency of
the presynaptic neuron. The value forgSY N was heuristi-
cally determined by setting it to a value high enough to
allow the circuit to become entrained within a reasonable
period of time but not so high as to produce perturbations in
membrane potential of the same order of magnitude as the
oscillation. At this value, numerous cycles may be required
to obtain phase-locked entrainment in many of the modes
identified. Entrainment occurs more quickly if the synaptic
weights are increased tenfold, but some of the interesting
modes disappear. Since the same principles of circuit analy-
sis apply in either case, the conductance was set at this low
value for illustrative purposes. Since the modulatory effects
of serotonin (5-HT) and dopamine (DA) were not consid-
ered, the concentrations [5-HT] and [DA] were set to zero;
ISTIM was varied as noted in the text and figure legends.
The output of the individual oscillators associated with each
leg (Fig. 1) was interpreted as only providing the timing for
the initiation of leg movement, which was assumed to co-
incide with burst initiation in the corresponding oscillator.
A burst is initiated when the average spike frequencyq be-
comes greater than zero, and terminated when it falls below
zero. Figure 3 illustrates the output of an individual oscilla-
tor that corresponds to silent hyperpolarized, bursting, and
beating electrical activity.

3 Results

3.1 Random search of state space

To determine the possible modes exhibited by this circuit,
two methods were employed. The first was random and em-
pirical, whereas the second approach had a theoretical com-
ponent. In the first method, the intent was to determine, in an
approximate way, the fraction of the relevant state space oc-
cupied by the attractor associated with each mode, based on
the frequency of occurrence of each mode in a series of ran-
dom trials. The underlying assumption was that a nonlinear
system of this complexity would contain multiple attractors
in its state space even at constant parameter settings (Guck-
enheimer and Holmes 1983; Goldbeter 1996). We therefore

2 These are the modified equations (the terms are explained in Butera et
al. 1996):

Isub(V, c, s, qpre) = ISI (V, c, s) + IR(V ) + IL(V ) + INaCa(V, c)

+ICaP (c) + INaK (V ) + ISY N (V, qPRE )

mL = NR(CcAMP )[mL0 + (ISY N − ISTIM )/2.0]

bL = [bL0 + (ISY N − ISTIM )/25.0]/NR(CcAMP ) .
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Fig. 3a–c.Output of an uncoupled oscillator asISTIM is varied. The dashed line indicates the approximate spike threshold; above this line average spike
frequencyq is greater than zero.a At hyperpolarizing values ofISTIM (−0.6 nA), the model neuron is silent because membrane potential never exceeds
the spike threshold;q is always less than zero. A negative value ofq (not shown) is interpreted as a spike frequency of zero.b With no extrinsic stimulus
current, bursting activity is exhibited. During bursting activity, the spike frequency exceeds zero during bursts but is zero in the hyperpolarized interval
between bursts.c At depolarizing values ofISTIM (2.5 nA), beating activity is observed. During tonically depolarized activity, the average spike frequency
is always above zero

determined the approximate range for each state variable
(V, s, c, q) during a typical oscillation, and prepared random-
ized sets of initial conditions for all four oscillators (16 initial
conditions required for each run). This method is necessar-
ily approximate because it is difficult to determine how to
sample the state space so as not to miss any attractors. As
a compromise between a reasonably large number of points
and a reasonable amount of simulation time, simulations us-
ing the same set of 256 initial conditions were run at several
values ofISTIM .

The results of the simulations are given in Fig. 4 by the
numbers in parentheses. For values ofISTIM much more
hyperpolarized than−0.5 nA, the circuit did not oscillate,
but rather remained hyperpolarized (not shown). At−0.5 nA,
two curious modes were observed, which are referred to as a
‘staccato’ gallop (Fig. 4a1) and a ‘staccato’ walk (Fig. 4a2).
These modes have the correct sequence of activation, but
not the correct phasing, for a gallop or a walk respectively.
The four possible rotational variants (only one is shown for
each) of the ‘staccato’ modes were in all cases observed in
roughly equal proportions. The staccato label indicates that
the four oscillators fire sequentially, then pause before the
sequence begins again. We are not aware that correspond-
ing gaits have been reported in mammals. At higher (more
depolarized) values of stimulus intensity, the phasing ap-
proaches the nominal values for the gallop (Fig. 4b1) and
achieves them for the walk (Fig. 4b2). The numbers in part
Fig. 4b add up to only 254 because in one case a bound was
observed and in another a lateral walk was observed (not
shown). At 0 nA, the gallop is no longer observed, but the
bound occurred frequently and the walk persisted (Fig. 4c).
The numbers in part Fig. 4c again add up to only 255 be-
cause in one case a lateral walk was observed (not shown).
In summary, multiple gait-like modes of oscillation were ob-
served at all values ofISTIM for which individual circuit
elements oscillate (but see Sect. 3.5), and both the types of
gait-like modes and their relative frequencies of occurrence
changed asISTIM was varied.

3.2 Phase response curve analysis

The second method that we employed to determine the pos-
sible modes exhibited by this circuit also addressed why the
circuit exhibited these modes at given background levels of
ISTIM . This method used the phase response curve (PRC)
of an oscillator to predict phase-locked entrainment of that
oscillator (Moore et al. 1963; Perkel et al. 1964; Pavlidis
1973; Winfree 1980; Glass and Mackey 1988; Kopell 1988;
Murray 1989; Demir et al. 1997). The PRC is obtained by
examining an uncoupled oscillator, applying a perturbation
at a given phase in the cycle, and recording the change in
the period of the cycle in which the perturbation occurs. The
intrinsic period of the oscillator isP0, and the phase of the
applied stimulus isφ = ts/P0, where ts is the time since
the beginning of the burst. The length of the cycle where
the perturbation occurred isP1(φ), since the length of the
perturbed cycle is a function of the phase of the stimulus
application. The normalized PRC is represented byF (φ),
whereF (φ) = (P1(φ)−P0)/P0, so that a positive value rep-
resents a phase delay and a negative value a phase advance.

In the present study, the PRC was obtained by using
a perturbation generated by a single burst from an identi-
cal neuron acting at a synapse identical to the ones used
in the circuit (Fig. 5). Specifically, the postsynaptic neuron
was initialized at the beginning of a burst and the presynap-
tic neuron was also intialized at the beginning of a burst but
at a phaseφ = ts/P0. Here,φ is the normalized difference
in phase between the presynaptic and postsynaptic oscilla-
tors (normalized by the intrinsic period). Then the perturbed
periodP1 was measured, and the protocol was repeated as
ts was varied through a range of values corresponding toφ
between 0 and 1. This form for the perturbation was chosen
to simulate as closely as possible the input that an oscillator
receives when it is a component of a ring circuit, provided
that the entrained frequency is not too different from the
intrinsic frequency. Traditionally, PRC analyses have used
short perturbations. Since we use perturbations that last for
a significant fraction of the burst cycle, it is possible that a
perturbation given late in the cycle will affect the timing not
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Fig. 4a–c. Oscillatory patterns as a result of
a random search asISTIM is varied. The
numbers inparenthesesindicate the number
of stimulations that produced the correspond-
ing mode of oscillation at each of three con-
stant values ofISTIM . The ‘staccato gallop’
(a1) and the ‘staccato walk’ (a2) are so called
because each sequence of steps is punctuated
by a pause. As the stimulus intensity was in-
creased, the gallop developed approximately
correct phasing (b1), as did the walk (b2). A
further increase in stimulus intensity caused
the bound to replace the gallop (c1), whereas
the walk remained (c2)

only of the cycle in which it is given, but also of the next
one (Fig. 6), if the cycle is defined as the period between
burst initiations. The assumption (described below) that the
perturbation only affects a single cycle can be retained if
the cycle is measured, as shown in Fig. 6, from the time the
perturbation is applied until the same point in the cycle is
reached again. In practice, it is simpler and still sufficiently
accurate to determine the change in cycle length by mea-
suring the time of occurrence of the second burst after the
perturbation (P2), then subtracting an unperturbed period to
obtainP1. Hence, we adopted this protocol: (P2−P0 = P1).

Our predictions of gait modes are based on the following
assumptions. First, we assume that the PRC is sufficient to
completely describe the dynamics of the oscillator. In other
words, we assume that the effects of a perturbation can be
completely described as a shift in the state variables of the
oscillator from one point on the limit cycle to another. This
assumption is approximately valid if the system trajectory
relaxes nearly back to the limit cycle oscillation within one
cycle after a perturbation (Kopell 1988; Demir et al. 1997).
Second, we assume that all four oscillators are entrained at
the same period in a given mode (stable pattern of oscilla-
tion). This assumption is made implicitly whenever phase
differences between legs or between adjacent oscillators are
normalized between 0 and 1, because they are normalized
by the common entrained period. Consequently, the phase
differences (normalized by the entrained period) between os-
cillators around the ring must add up to an integer, since an
oscillator must be in phase with itself. Another consequence
is that each cell receives exactly one perturbational input
during one entrained period, which is then equivalent to the
perturbed period (P1) discussed above, except that in the
generation of the PRCs,φ is normalized to the intrinsic pe-
riod, whereas in the circuit,φ is normalized to the entrained
period. Thus, a link can be made from the analysis of the
circuit to the PRC. The phase difference between adjacent
oscillators,φi = θPRE − θPOST (wherei is the number of
the presynaptic oscillator), is equivalent to the usage ofφ
in the generation of the PRCs as described above, except
that the relative phases in the PRC generation and within

the circuit are normalized to different periods. Since each
oscillator receives one perturbation per cycle at a phase of
φi, thenP1 = P0(1 +F (φi)), andF (φi) must have the same
value for each phase differenceφi around the ring.3 In other
words, since all oscillators have the same intrinsic period
(P0), they must also have the same phase advance or delay
F (φ) in order to be entrained with the same period (P1).
Each oscillator is effectively entrained by its presynaptic
cell at a phase difference ofφi. For this entrainment to be
stable given a periodic drive, the PRC must have a slope
between 0 and 2 at the point (φi, F (φi)) (Moore et al. 1963;
Perkel et al. 1964). This result does not apply to the ring cir-
cuit directly because no single oscillator can be considered
an unperturbed periodic drive. Theoretical work in progress
(Dror et al. in preparation) indicates that a slope between 0
and 1 is a sufficient but not necessary condition for stable
entrainment within a ring circuit, and that slopes that are all
either less than 0 or than 2 guarantee that a mode will be
unstable.

Given the above assumptions and an identical PRC for
each oscillator in the ring, the existence of an oscillation or
gait pattern is predicted for any set ofn points on the PRC
such that:

φ1 + φ2 + . . . + φn = j(1 +F (φi)), j ∈ [0, 3] (1)

F (φ1) = F (φ2) = . . . = F (φn) (2)

wheren is the number of oscillators in the ring and allφi are
normalized to the intrinsic frequency. Equation (1) formal-
izes the first criterion for existence of a mode: that the values
of φ around the ring must add up to an integer (j) multiplied
by a correction factor of (1 +F (φ)) to account for the differ-
ence between the entrained period and the intrinsic period.
Equation (2) formalizes the second criterion: thatF (φ) must
be the same for all values ofφ (normalized to the intrinsic
frequency). The second criterion is automatically satisfied

3 This approach can be generalized to circuits of nonidentical oscillators.
For example, if all oscillators do not have the same intrinsic periodP0, then
the quantityP0(1 +F (φi)) must be constant for all oscillators in order for
them to be entrained at the same frequency.
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Fig. 5a–c. Method for determination of the phase response curve.a P0
denotes the free-running, or intrinsic, period of the oscillator. In botha
and b, the long horizontal dashed lineindicates the voltage threshold for
burst initiation, and the waveform plotted with acontinuous lineshows the
variation in membrane potential for the oscillator whose PRC is being mea-
sured (indicated by acontinuous linein part c). b P1 denotes the perturbed
period of the same oscillator. Thedot-dashed lineshows the perturbation
applied at timets, a burst generated by the oscillator outlined by adot-
dashed linein part c The inhibitory connection shown by adotted linein c
is only enabled during the period indicated by thehorizontal barunder the
dot-dashed burst. The oscillator indicated by thecontinuous lineappears
to rebound from inhibition before the perturbing burst has ended; this is
because the threshold for burst termination is slightly different from that
for burst initiation.c Schematic setup for the generation of the PRC

for the modes in which a single value ofφ is repeatedn
times. We have normalized phases so that 0≤ φ < 1, so
there are only n distinct values ofj that may give distinct
solutions. In a ring circuit wheren = 4, these modes corre-
spond to the pronk (φ = 0, j = 0), the walk (φ = 0.25, j = 1,
see Fig. 7a for an illustration), the bound (φ = 0.5, j = 2),
and the lateral walk (φ = 0.75, j = 3), where the phases
in parentheses are normalized to the entrained frequency.
All possible combinations of phase differentials that meet
the existence criteria for a ring circuit of four oscillators
are tabulated in the Appendix. For example, all values ofφ
could be equal, or all but one equal, or there could be pairs
of equal values, or all four could be distinct (the most gen-
eral case). The existence of modes must be determined by
examining the PRC to identify values ofφ that satisfy the
existence criteria. We implemented this scheme with a com-
puter program that input the PRC, then determined regions
of overlapping values ofF (φ) and systematically searched
for sets ofφi that satisfied the criteria. However, existence
of a mode does not guarantee that it will be observable in
practice. In order to produce and detect an oscillatory mode,
either in computer simulations or in the physical world, sta-

P0 P0

P1

ts

a

b P2

Fig. 6a,b.Long perturbations may affect the timing of two bursts.a Again,
P0 denotes the free-running, or intrinsic, period of the oscillator. In both
a and b, the long horizontal dashed lineindicates the voltage threshold
for burst initiation, and the waveform plotted with acontinuous lineshows
the variation in membrane potential for the oscillator whose PRC is being
measured.b P1 denotes the perturbed period of the same oscillator, and
P2 is the quantity that was measured to determineP1. Thedot-dashed line
shows the perturbation applied at timets. The duration of the perturbation
is shown by thethick line, which continues past the initiation of the first
burst after the perturbation; hence it affects the timing of the second burst
as well. If the perturbed cycle is defined as shown above, the assumption
that only one cycle period is affected can be retained. This assumption is
necessary to use the PRC to predict oscillatory modes

bility is required. Otherwise, the system would have to be
precisely initialized and never perturbed – conditions that are
impossible to achieve in practice. As mentioned above, pre-
vious work on entrained oscillators (Moore et al. 1963) and
our own observations indicate that the slopes of the PRC at
the points (φi, F (φi)) provide useful information regarding
stability.

3.3 Phase response curve results

The PRC for an oscillator depends upon the parameters asso-
ciated both with its intrinsic dynamics and with the applied
perturbation (which in this study are in turn dependent upon
the parameters of the synaptic coupling). Hence one would
expect to have different PRCs at different values ofISTIM ,
and that the stable modes determined by the PRCs corre-
spond to those in Fig. 4. Figure 8 illustrates how these stable
modes are identified. A horizontal line indicates a fixed value
of F (φ); the intersection of the horizontal line with the PRC
identifies all values ofφ for whichF (φ) is identical. Then a
calculation is made to determine whether there exists a set
of n of theseφi that satisfy (1). Parts a, b, and c in Fig. 8
show the PRCs obtained at the same values ofISTIM used
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Table 1. Results of a search for sets of values ofφi that meet the existence criteria using the three phase response curves
given in Fig. 8

ISTIM Gait 1 +F (φ) φ1 φ2 φ3 φ4 m1 m2 m3 m4

−0.5 pronk 1.008 0.000 0.000 0.000 0.000−1.276 −1.276 −1.276 −1.276
−0.5 walk 0.999 0.250 0.250 0.250 0.250−0.007 −0.007 −0.007 −0.007
−0.5 bound 0.982 0.491 0.491 0.491 0.491−0.055 −0.055 −0.055 −0.055
−0.5 l. walk 1.096 0.822 0.822 0.822 0.822−1.060 −1.060 −1.060 −1.060
−0.5 trot−like 0.985 0.027 0.027 0.465 0.465−0.148 −0.148 −0.107 −0.107
−0.5 trot−like 0.996 0.144 0.144 0.354 0.354 0.158 0.158 −0.059 −0.059
−0.5 s. walk 0.999 0.188 0.270 0.270 0.270 0.024 −0.012 −0.012 −0.012
−0.5 s. walka 0.995 0.136 0.136 0.136 0.587 0.167 0.167 0.167 0.345
−0.5 s. gallopa 0.999 0.203 0.598 0.598 0.598 0.012 0.400 0.400 0.400
−0.5 a. bound 0.990 0.417 0.417 0.573 0.573−0.119 −0.119 0.280 0.280
−0.5 bound−like 0.983 0.476 0.476 0.476 0.537−0.089 −0.089 −0.089 0.116
−0.5 s. l. walk 1.078 0.717 0.839 0.839 0.839 0.890 −1.066 −1.066 −1.066
−0.5 trotlike 1.038 0.669 0.669 0.887 0.887 0.725 0.725 −0.425 −0.425
−0.5 trotlike 0.988 0.013 0.094 0.440 0.440−0.283 0.162 −0.125 −0.125
−0.5 trotlike 0.991 0.003 0.003 0.411 0.576−0.572 −0.572 −0.113 0.293

−0.15 pronk 1.018 0.000 0.000 0.000 0.000 4.165 4.165 4.165 4.165
−0.15 walka 0.997 0.249 0.249 0.249 0.249 0.027 0.027 0.027 0.027
−0.15 bounda 0.994 0.497 0.497 0.497 0.497 0.068 0.068 0.068 0.068
−0.15 l. walka 1.040 0.780 0.780 0.780 0.780 0.068 0.068 0.068 0.068
−0.15 s. gallop 0.998 0.299 0.566 0.566 0.566−0.003 0.104 0.104 0.104
−0.15 bound−like 0.994 0.471 0.506 0.506 0.506−0.013 0.016 0.016 0.016
−0.15 s. l. walk 1.036 0.750 0.750 0.750 0.859 0.176 0.176 0.176−0.255
−0.15 transitionalb 1.020 0.000 0.680 0.680 0.680−79.58 0.255 0.255 0.255
−0.15 transitionalb 1.020 0.000 0.680 0.680 0.680 3.955 0.255 0.255 0.255

0.0 pronk 1.024 0.000 0.000 0.000 0.000 6.989 6.989 6.989 6.989
0.0 walk a 0.996 0.249 0.249 0.249 0.249 0.045 0.045 0.045 0.045
0.0 bounda 0.995 0.498 0.498 0.498 0.498 0.021 0.021 0.021 0.021
0.0 l. walk a 1.038 0.779 0.779 0.779 0.779 0.250 0.250 0.250 0.250
0.0 s. l. walk 1.035 0.750 0.750 0.750 0.860 0.155 0.155 0.155−0.225
0.0 transitional 1.023 0.689 0.689 0.689 0.000 0.234 0.234 0.234 6.588

Themi are the slopes of the phase responce curve (PRC) at the point (φi, F (φi)). The i designations are arbitrary: any
permutation of theφi within an identified set will produce a rotational variant of the mode (see Appendix). Theφi in
this table are normalized to the intrinsic frequency. The predictedφi in Table 2 were obtained from theφi in this table
by dividing them by (1 +F (φ)), in order to predict the relative phases normalized to the entrained frequencies. Modes
designated transitional are transitional between two staccato modes (see Appendix). The PRCs in this study all have a
region of steep negative slope nearφ = 0, and in each case several modes were found with slopes more negative than
−1000. These modes are predicted to be highly unstable, and were not included in this table
l., lateral; s., Staccato; a., asymmetric
a Modes that have only small positive slopes
b These modes do not differ until the fourth decimal place, so they appear identical except for the first slope

in parts a, b and c of Fig. 4, respectively. Table 1 gives the
results of a systematic search for sets ofφi in these PRCs
that satisfy the existence criteria for oscillatory modes, as
well as the slopes of the PRC at the points (φi, F (φi)). Of
the sets found atISTIM = −0.5 nA, only two had all pos-
itive slopes less than 1, and these two corresponded to the
two that were observed in computer simulations (the stac-
cato walk and staccato gallop). Similarly, at the other two
values ofISTIM , only modes with all positive slopes were
observed in the simulations, with one exception. AtISTIM
= −0.15 nA, the ‘gallop’ was associated with a slope of
−0.003. If ISTIM is increased any further, this mode loses
its stability. This exception illustrates that while small pos-
itive slopes appear to be a sufficient condition for stability,
they are not a necessary condition, as certain combinations of
negative and positive slopes (but not all negative) may result
in stable modes as well (Dror et al. in preparation). In addi-
tion, some modes with one or more positive slopes greater
than 2 met the existence criteria but were not observed in
simulations, and are probably unstable. The condition that
all small positive (< 1) slopes guarantee stability has not

been rigorously proven for alln, but appears to work well
as a heuristic.

In Fig. 8, stable observed modes are indicated by sym-
bols. There is a close correspondence between the phasic
relationships observed during simulations and the phasic re-
lationships predicted from the PRCs (Table 2), as well as
between the entrained periods predicted by the PRCs and the
observed entrained periods. Hence, the assumptions made in
the PRC analysis are approximately valid. For example, in
Fig. 8a, two modes are predicted: a staccato walk and a stac-
cato gallop. In the staccato walk (the corresponding values
of φ are indicated by circles), the PRC curve predicts that
three of the fourφ values will be equal to 0.136 and the
fourth will be equal to 0.587. These values were obtained
by inspecting the PRC curve (using a computer program)
in Fig. 8a to determine whether any two values ofφ with
the same value ofF (φ) and appropriateF ′(φ) satisfied the
equation 3φi + φj = 1(1 +F (φ)). The mechanics of howφi
andφj that satisfy this equation result in a staccato walk are
illustrated both in Fig. 7b and in the Appendix, Special Case
II.
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Fig. 7a,b. Illustration of phasic relationships.φi denotes the fraction of
a cycle by which the initiation of the burst in the presynaptic oscillator
(the ith oscillator) follows that in its postsynaptic oscillator. Thus, in order
to calculate the relative phase difference between an oscillator and the
reference oscillator (LF, i = 1), begin at the reference oscillator, then sum the
phase differences around the ring in a clockwise direction until the oscillator
for which the relative phase is desired is reached. If the sum is not greater
than or equal to 0 and less than 1, add an integer in order to renormalize
it. a In a walk, the phase drop between adjacent oscillators (φi) is constant
at 0.25; therefore the sum around the ring is 1. The relative phases are as
follows: θ1 = 0;θ2 = φ3+φ4+φ2 = 0.75;θ3 = φ3 = 0.25;θ4 = φ3+φ4 = 0.5.
b In a staccato walk, there are two distinct values ofφ, one of which is
repeated three times; the sum around the ring is 1 as in the walk. The relative
phases are as follows:θ1 = 0;θ2 = φ3 + φ4 + φ2 = 1.411 = 0.411;θ3 =
φ3 = 0.137;θ4 = φ3 + φ4 = 0.274. There is a longer pause between burst
initiation in oscillator 2 and 1 (0.590 cycle) than between other consecutive
burst initiations (0.137 cycle), hence the staccato nature of this mode

Also in Fig. 8a, a staccato gallop was predicted (see the
squares) in which three values ofφ are equal to 0.598 and
the fourth is equal to 0.203. This prediction was obtained
in a similar fashion to the previous prediction, but in this
case 3φi +φj = 2(1 +F (φ)) (see Appendix, Special Case II).
Again, the observed phasic relationships are in close agree-
ment with the predictions (Table 1). In Fig. 8b, the stac-
cato walk no longer exists due to the flattening of the PRC
curve at more depolarized stimulus currents. The staccato
gallop remains, but is at the limit of its stability. Table 1
shows that the PRC analysis revealed one negative slope
associated with this mode, but of such small magnitude as
to be apparently within the error of our methods. We have
called this mode a ‘gallop’ because the relative phases (θ)
are within 17% of the nominal phasic relationships in a ro-
tary gallop (Fig. 2). This criterion is similar to that used by
others (Collins and Richmond 1994) based on the variability
in phasic relationships observed in locomoting quadrupeds.
In order to achieve exactly the nominal phasic relationships
given by Alexander (1984) for a gallop, three values ofφ
with the sameF (φ) are required (see Sect. 4 and Appendix),
rather than just two for the staccato (approximate) gallop.
In addition, the walk (diamond), bound (cross), and lateral
walk (asterisk) have gained stability since the points at the
corresponding values ofφ now fall in regions of positive
slope. In Fig. 8c, further flattening of the PRC eliminated
the gallop, leaving only the walk, bound, and lateral walk.

The PRC analysis can predict from the information in
the PRCs alone whether a gaitlike pattern will be observed.
Therefore, this method can be applied to experimental prepa-
rations as well as to mathematical models. The application
of PRC methods to mathematical models is computationally
less intensive than a random search of the multidimensional
state space associated with a circuit model, and also can
provide some insight into how the parameters of the model
might be adjusted in order to produce a desired pattern. The
PRC analysis alone does not indicate how likely it is that
a particular pattern will be observed given random initial
conditions. Instead, this likelihood was determined by trial
and error as in Fig. 4.

The analysis given in the Appendix makes predictions
about the behavior of an identically coupled network of four
identical oscillators in a ring. Given the mapping of the oscil-
lators in a ring to the legs of a quadruped as shown in Fig. 1,
then the existence and stability of certain gaits implies the
existence of certain others (see Appendix). For example, the
existence of the trot implies the existence (at the same fre-
quency) of the pace, the bound, the pronk, and four other
nonphysiological modes in which any three legs are in phase
but the fourth is not (we have termed this a ‘tripod’ mode).
The reasoning is straightforward: if a trot exists, thenφ= 0
andφ= 0.5 have the same value ofF (φ). Hence, the bound
(φ = 0.5) and the pronk (φ = 0) exist. The remaining six
gaits are produced by pairs of values ofφ, two equal to 0
and two equal to 0.5. There are six distinct possible ways to
assign these values around the ring (see Appendix). There
are four possible tripod modes because any of the four legs
can be the one that is out of phase. These four modes are an
example of rotational symmetry, because they can be pro-
duced by having each oscillator take the role of the next
one in the ring (a rotation). The gallop is another mode with
rotational symmetry: the existence of a transverse gallop im-
plies the existence of a rotary gallop and vice versa. There
are two mirror image (with respect to the bilateral symmetry
of the quadruped) variants of each type of gallop, depending
upon whether the front right foot or the front left foot strikes
first in each cycle.

3.4 Use of PRC analysis to design a ring circuit for
quadrupedal locomotion

The simulations in the preceeding sections suggest that one
way to effect a transition between gaits would be simply to
perturb the circuit so that the oscillatory activity is shifted
between modes that coexist at a particular parameter setting
(Haken et al. 1985; Park et al. 1996), between a walk and
a bound at 0 nA stimulus intensity (see Fig. 4c). The work
of von Holst (1993) suggests that different oscillatory pat-
terns (modes) of locomotion can coexist in fish: he was able
to switch the patterns of coordination between different fins
of a fish from in phase to out of phase merely by pinch-
ing the fish’s tail, which could be interpreted as a perturba-
tion. In horses, data on oxygen consumption versus speed
(Hoyt and Taylor 1981) suggest the coexsistence of the trot
and the gallop over a range of speed, which is consistent with
treadmill experiments using cats that have shown sponta-
neous switching between these two modes in the intermedi-
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modes predicted for a ring circuit by the analysis of these curves are summarized at the bottom. The symbols identify predicted stable modes for each
curve, except that the staccato gallop (or ‘gallop’) mode atISTIM = 0 nA is also identified even though the resolution of our method was not good enough
to predict the stability of this mode. Thehorizontal dashed linesconnect points with identical values ofF (φ)

Table 2.Predicted and observed phasic relationships around the ring (φi) and with respect to the reference oscillator
(θi)

ISTIM Gait φ1 φ2 φ3 φ4 P1(ms) θ2 θ3 θ4

−0.5 s. walk predicted 0.590 0.137 0.137 0.137 15966.8 0.411 0.137 0.274
observed 0.592 0.136 0.136 0.136 15963.6 0.408 0.136 0.272

−0.5 s. gallop predicted 0.599 0.599 0.599 0.203 16031.2 0.398 0.603 0.795
observed 0.600 0.600 0.601 0.199 16031.8 0.40 0.601 0.80

−0.15 walk predicted 0.25 0.25 0.25 0.25 13249.4 0.75 0.25 0.5
observed 0.25 0.25 0.25 0.25 13249.6 0.75 0.25 0.5

−0.15 ‘gallop’ a predicted 0.567 0.567 0.567 0.300 13255.8 0.434 0.567 0.867
observed 0.567 0.567 0.568 0.297 13255.6 0.432 0.568 0.865

−0.15 bound predicted 0.50 0.50 0.50 0.50 13210.7 0.50 0.50 0.0
observed 0.50 0.50 0.50 0.50 13209.5 0.50 0.50 0.0

−0.15 l. walk predicted 0.75 0.75 0.75 0.75 13815.8 0.25 0.75 0.50
observed 0.75 0.75 0.75 0.75 13813.6 0.25 0.75 0.50

0.0 walk predicted 0.25 0.25 0.25 0.25 12693.2 0.75 0.25 0.5
observed 0.25 0.25 0.25 0.25 12693.3 0.75 0.25 0.5

0.0 bound predicted 0.50 0.50 0.50 0.50 12684.6 0.50 0.50 0.0
observed 0.50 0.50 0.50 0.50 12684.3 0.50 0.50 0.0

0.0 l. walk predicted 0.75 0.75 0.75 0.75 13235.2 0.25 0.75 0.50
observed 0.75 0.75 0.75 0.75 13235.7 0.25 0.75 0.50

The φi were obtained by dividing theφi in Table 1 by the corresponding 1 +F (φ). The predicted periods (P1)
were obtained by multiplying (1 +F (φ)) by the measured intrinsic period. The intrinsic periods were 12745.3 ms
at ISTIM = 0 nA, 13285.9 msec atISTIM = −0.15 nA and 16050.9 ms atISTIM = −0.5 nA. θ1 is zero by
convention in all cases. The remainingθi were computed as follows:θ2 = φ3 + φ4 + φ2; θ3 = φ3; θ4 = φ3 + φ4.
Integers were then added or subtracted to produce a phase between 0 and 1
a This mode had one negative slope with a very small magnitude (see text)

ate region between trotting and galloping (Shik et al. 1966).
Such an overlap between modes should cause the transition
between a trot and a gallop to occur at different speeds de-
pending upon whether the speed is increasing or decreasing;
this phenomenon is known as hysteresis. Thus, in this tran-
sition region, competing coexisting attractors are justified by
the data, but in all other parametric regions, a single attractor
corresponding to one gait should dominate.

Transitions between gaits can be achieved in our model
by changing the value of the control parameterISTIM . For
example, atISTIM= −0.5 nA, the model must either be in a
staccato walk or in a staccato gallop mode, but since neither

of these modes exists atISTIM = 0 nA, if ISTIM is changed
from −0.5 nA to 0 nA, a transition from the staccato mode
to one of the stable modes at 0 nA must occur. While a sys-
tematic study was not made, it appeared that a staccato walk
transitioned to a walk whereas a staccato gallop transitioned
to a bound. These transitions were slow (not shown) due
to the weak coupling, as mentioned above. While these are
not the transitions observed in a quadruped, the analysis in
the preceeding two sections provides a blueprint for a novel
design method for a quadrupedal pattern generator that goes
from stance to a walk to a trot to a gallop (with hystere-
sis in the latter transition) as a control parameter (stimulus
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intensity) is varied. That is, in order for a ring circuit of os-
cillators to produce any given pattern in which they are all
entrained at the same frequency, the required characteristics
of the PRCs can be deduced a priori. A separate issue, not
addressed in this study, is how to design an oscillator that
will produce the appropriate PRC.

Figure 9 shows a freehand drawing of the hypothetical
PRCs for a ring circuit that produced the correct gait tran-
sitions as stimulus intensity is increased. Initially, only a
walk gait is stable as indicated by the diamond in Fig. 9a. A
PRC with a single minimum and maximum also has a sin-
gle region of positive slope, and therefore cannot have two
or more values ofφ with the same value ofF (φ) that both
have positiveF ′(φ). Therefore the only possible gait modes
associated with this PRC are those with four equal values of
φ. Of the four possible such modes (see Appendix, Special
Case I), only the walk (φ = 0.25) is stable since it alone falls
in the region of positive slope. As the stimulus intensity is
increased (equivalent to makingISTIM more depolarized in
our model), another local minimum and maximum appear
nearφ = 0.25, and the walk becomes unstable since it falls
in the negative slope region created by the new minimum
and maximum. The second region of positive slope enables a
new mode composed of pairs of values ofφ near 0.25 (0.24
and 0.26 for example) that is associated with a stable trot-
like walk. This mode becomes more like a trot as the new
minimum and maximum move farther away from each other,
until in Fig. 9c the gait is much closer to a trot than a walk.
This simulates the actual transition between a walk and a trot
in quadrupeds, which is gradual (Shik and Orlovsky 1976).
Then in Fig. 9d, a third maximum-minimum pair appears
near 0.5, so that 0.5 falls in the negative slope region and
a bound is unstable. This third region of positive slope en-
ables a new mode (with threeφi equal to 0.55 and one equal
to 0.35) to coexist with the trot. The new mode produces a
‘staccato’ gallop with phasic relationships very close to those
published for a gallop. A ‘true’ gallop with three distinct val-
ues ofφ would require yet another maximum-minimum pair
to be created, so it is plausible that the gallop, whose phas-
ing is somewhat arbitrary, may actually correspond to what
we have called a staccato gallop. Finally, in Fig. 9e, the trot
ceases to exist as the hump in the PRC responsible for it is
flattened out by increasing stimulus intensity.

We have focused here on the gait transitions exhibited by
cats and horses. Other quadrupeds have differing sequences
of gait transitions (Hildebrand 1976, 1977). However, if a
ring circuit can indeed capture the essential dynamics of the
CPG for quadrupedal locomotion, then perhaps the adaptive
influence of evolution, operating within the constraints im-
posed upon a particular species by its flexibility and require-
ment for mechanical stability (balance), can produce species-
specific PRCs for the limb oscillators, resulting in the differ-
ing gaits characteristic of different quadrupeds. Along these
lines, the walk sequence is the single one that maximizes
static stability (McGhee and Frank 1968); hence it is ubiq-
uitous among quadrupeds.

3.5 Additional modes observed due to bistability

As described in Sect. 1, the individual oscillators that we
have employed have a bistable range from aboutISTIM =
0.2 to ISTIM = 1.8 nA (Butera et al. 1996). In this bistable
range, a depolarized mode corresponding to tonic firing, or
beating, coexists with an oscillation corresponding to burst-
ing activity. Therefore, when the neurons are coupled into
a four-element circuit, one might expect to observe modes
corresponding to all 16 possible combinations of beating
and bursting neurons. We have indeed observed all 16 pos-
sible combinations. However, in the circuit, all modes in
which fewer than four oscillators exhibited a full-scale os-
cillation corresponding to bursting were observed at values
of ISTIM that were slightly higher than 1.8 nA, the upper
limit of the bistable range in an individual oscillator. For
values ofISTIM greater than 1.8 nA, PRC analysis is im-
possible, because the uncoupled circuit elements no longer
oscillate. Although all 16 binary combinations referred to
above have been found, the full complement has not been
shown to coexist at a single value ofISTIM .

Some of these combinations are shown in Fig. 10. In
fact, there are more than 16 possible combinations since
modes with the same number of bursters and beaters may
also be distinguished by phasic relationships. For example,
in Fig. 10a and b, all four oscillators are in a bursting mode,
but Fig. 10a represents a bound and Fig. 10b represents a
walk. In Fig. 10c, there are two bursters (LH, RH) while
the other two are beaters, albeit with a slight oscillation in
frequency, since the spike frequency is always above zero.
Thus, a ring circuit composed of bistable elements can pro-
duce patterns in which only some of the oscillators are ac-
tive, with no change in connectivity. Thus, in principle, an
analogous locomotor CPG could produce behaviors in ad-
dition to quadrupedal locomotion, such as hopping on the
hind legs, as suggested by Fig. 10c. In Fig. 10d, there are
three bursters and one beater, whereas in Fig. 10e, poten-
tially corresponding to a scratch, there is one burster and
three beaters. Finally, in Fig. 10f all oscillators exhibit a low-
amplitude oscillation corresponding to four tonically spiking
neurons, perhaps corresponding to a rigid stance. Hence,
bistability endows these neurons with a type of complexity
that is not amenable to PRC analysis. Figure 10 does not
provide a complete listing of all modes that were detected
in the parametric region just above the threshold for oscilla-
tory activity in a single circuit element. For example, another
mode that has been detected (not shown) atISTIM = 1.9 nA
has a 3 to 1entrainment ratio between the frequency of
the front legs and the hind legs. The frequency of occur-
rence of the mode corresponding to four beaters (Fig. 10f)
in random state-space searches (described above) steadily in-
creases from a couple of percent atISTIM = 1.9 nA to over
50% at 2.2 nA. The bound, on the other hand (Fig. 10a),
predominates at 1.9 nA, but was not found at 2.0 nA and
reappeared at 2.1 nA. Due to the capacity of the circuit to
exist in one of numerous modes based on the history of the
activity of the circuit, these modes endow this circuit with
the potential for use in an entirely different context, as an
associative memory.

At sufficiently depolarized values ofISTIM (2.5 nA),
most initial conditions resulted in a nonoscillatory depolar-



377

φ

(φ
)

F

10 0.25 0.50 0.75 10 0.25 0.50 0.75

φ
10 0.25 0.50 0.75

φ

10 0.25 0.50 0.75

φ
10 0.25 0.50 0.75

φ

(φ
)

F

walk trot−like walk approximate trot

galloptrot and gallop overlap

a. b. c.

e. d. 

Fig. 9a–e.Idealized PRC for Gait Transitions. The shape of the PRC must change with increasing stimulus intensity in order for a ring circuit composed
of oscillators characterized by these PRCs to reproduce the gait transitions exhibited by quadrupeds. The curves were not generated by simulations but are
idealized schematics.a The diamondrepresents a stable walking mode.b The circles represent the two values ofφ that comprise a stable trot-like walk
mode that is very close to a walk.c The circles show the values ofφ for a trot-like walk that is nominally a trot.d The circles still represent the values
of φ for a trot-like walk, and thesquaresrepresent the two values ofφ in a stable staccato gallop that has phasic relationships close to the nominal values
for a gallop.e The squaresindicate that only the nominal gallop mode exists and is stable for this PRC. Thehorizontal dashed linesconnect points with
identical values ofF (φ)

−50

−40

−50

−40

−50

−40

10 sec

LF,RF  LH,RH
 RH

LF,RF

LF,RF LH,RH

 LH,RH
LH LF RF

LH
LF  RF
 RH

a.  bound    b.  walk

d.  walk on three legsc.  hop on hind legs

f.  stationarye.  scratch

Fig. 10a–f. Modes with subsets of bursters. Ina and b all
four neurons are bursters; these simulations were generated
at ISTIM = 1.9 nA. In c there are two bursters, shown
at ISTIM = 2.0 nA. In d there are three bursters, shown
at ISTIM = 2.0 nA. In e there is one burster, shown at
ISTIM = 1.9 nA. In f, there are no bursters; the small
oscillation shown atISTIM = 2.0 nA is always above the
spiking threshold

ized state (not shown). However, in some instances a curious
double-period lateral walk mode was observed (not shown).
The inhibition produced by a burst was sufficient to annihi-
late the subsequent burst in the postsynaptic neuron, hence
the double period.

4 Discussion

4.1 Comparison with other models of gait generation

Schoner et al. (1990) modeled gait generation using variables
representing the three relative phases resulting from setting
the right front foot as a constant reference point. The rates of
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change of the relative phases for each leg are described by
periodic functions of the phase differential between that leg
and each of the two adjacent legs. The functions are repre-
sented as second-order Fourier series, and the Fourier coef-
ficients are the coupling parameters of the model. Hence,
it is difficult to interpret this model physiologically, but
Schoner et al. obtained gait-like patterns. They observed two
types of transitions as they varied the coupling parameters
of their model: continuous, such as between a walk and a
trot, and abrupt with hysteresis, such as between a trot and
a bound. Interestingly, their approach, like ours, predicts a
parametric region in which the pronk (they call it the jump),
bound (gallop), trot, pace, and the four tripod modes are all
stable. While in this study, the coupling parameters were
the bifurcation, or control, parameters, one of the authors
(Kelso 1995) has suggested that frequency could also be a
control parameter. He further theorized that gait transitions
are nonequilibrium phase transitions, which is another way
of phrasing our hypothesis regarding gait transitions.

Using a model of coupled nonlinear oscillators, Stafford
and Barnwell (1985) also achieved gait transitions by chang-
ing the interlimb coupling terms. Each leg was represented
by four state variables, one each for the hip, knee, ankle, and
toe flexors (the oscillatory pattern was assumed to be gener-
ated by flexor, not extensor, activity), and the interlimb cou-
pling included components for selective coupling between
the 16 flexor groups. For example, their model produced
a walk when the mutual interlimb coupling terms between
all four legs were sufficiently strong and equal (tetrahedral
symmetry, see Fig. 11a). When the diagonal contralateral in-
hibition was reduced (see Fig. 11b), a trot was produced.
Finally, when the diagonal contralateral inhibition was re-
stored and the homologous contralateral inhibition removed
(see Fig. 11c), a bound was produced (they call it a gallop).
This final configuration is qualitatively equivalent to the ring
that we used, except for the bidirectional coupling. There are
three ways to map a ring circuit onto the legs of a quadruped
(Fig. 11b–d), but, as we stated in Sect. 1, only the circuit in
Fig. 11c produces the sequence of footfalls observed in a
walk. In our simulations of our ring model (unpublished
observations) using a tetrahedrally symmetric configuration,
a walk sequence, in which each leg was 90◦ out of phase
with the next leg, was produced as in their model. However,
the walk sequence coexisted with five other patterns that
were equally likely to result from random initial conditions
and corresponded to the other five possible leg sequences,
exemplified by the lateral walk and the four gallops. Thus,
although Stafford and Barnwell do not mention whether they
found other patterns in their model coexisting with the walk,
our results suggest that they exist. Nonetheless, they show
clearly that rewiring the interlimb circuit in a physiologi-
cally interpretable way is a viable method of changing gaits,
albeit not the only possible one.

Yuasa and Ito (1990) produced a method for designing
a gait pattern generator using four simple oscillators with
nonidentical coupling. In their approach, as in that of the
two previously discussed studies, the patterns of interlimb
connection were varied in order to produce simulated gait
transitions. The uncoupled two-variable oscillators that they
used were designed to relax to a circular limit cycle with a
constant angular velocity, with a state variable representing

LF    RF

   RH LH

LF    RF

   RH LH

LF    RF

   RH LH

LF    RF

   RH LH

a b

dc

Fig. 11a–d.Four different interlimb connection schemes. The scheme ina
does not map onto a ring but rather has tetrahedral symmetry. The schemes
in b, c, andd represent a ring circuit with all possible mappings to the legs
of a quadruped

the phase of the oscillator and one representing the radial
distance from the origin. The functional dependence of the
phase of each oscillator on the phases of the other oscillators
was adjusted to achieve the desired phasic relationships in a
gait. The precise form of the couplings was determined by
minimizing an appropriate potential function in phase space,
so, as in Schoner et al. (1990), there is no clear physiological
interpretation of their model.

Collins and Richmond (1994) have taken a different and
novel approach that inspired our own study. In their model,
which used the same ring configuration that we have used,
the interlimb coupling was fixed. They employed three iden-
tically connected circuits, which differed in the type of sim-
ple nonlinear oscillators (Van der Pol, Fitzhugh-Nagumo, or
Stein) that comprised the circuit elements. Rather than vary-
ing the connections, they added a driving function for each
oscillator and varied the parameters of the driving function.
This function was slightly different for each of the three
types of simple nonlinear oscillators that they studied but
always had a constant component and a sinusoidal compo-
nent. The magnitude of both components and the frequency
of the sinusoidal input were varied, along with one control
parameter that affected the characteristic amplitude and/or
frequency of the oscillator. For each of the three circuits,
they found a set of parameters at which a pattern corre-
sponding to a walk was generated. Then, by increasing the
values of up to four independent parameters, a transition to
a trot, and then to a bound was obtained. In our recreation4

of their simulations at the nominal parameter values they
gave for each gait, we found coexisting attractors in every
case. Collins and Richmond alluded to the presence of these
competing attractors. We found that the bound was stable at
each of the nominal sets of parameters, and predominated in
all cases except at the parameter settings given for the walk
using the Stein oscillators; in that case, the walk attracted
about the same number of random initial conditions as the

4 There were two typographical errors in the Collins and Richmond paper
regarding the FitzHugh-Nagumo model: the parameter values given fork1
andk2 were interchanged, and the second plus sign in the equation for ˙xi
should have been a minus.
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bound. In accordance with the predictions in the Appendix,
the pace coexisted with the trot whenever the trot occurred,
and in the Van der Pol and Stein circuits the four variants
of the tripod gait were also detected. We did not detect the
tripod gait in the FitzHugh-Nagumo model, perhaps as a
consequence of the fact that we detected the trot and the
pace themselves very infrequently (combined, they attracted
less than 6% of the random initial conditions). In the trot
observed by Collins and Richmond, the diagonal legs were
not exactly in phase: this condition would result if the values
of the pairs ofφi were not exactly equal to 0 and 0.5, but
only approximate (per the Appendix, the two distinct values
must add up to 0.5).

4.2 The ring circuit as a model for quadrupedal locomotion

It has been suggested that successive bifurcations lead-
ing to gait transitions break more and more symmetry
(Collins and Stewart 1993) we propose that, in a ring model
of gait generation, successive bifurcations correspond to a
change in the number of distinct values ofφ required to sat-
isfy the criteria for stable gait generation described in Sect. 3.
Whether the transition is gradual, as in a walk-trot transition,
or abrupt with hysteresis, as in the trot-gallop transition, de-
pends upon how the lower-speed gait loses its stability. The
PRC analysis shows why some gaits are more likely to be
observed in a ring model than others: the simplest require
only one valueφ that satifies the three criteria described in
Sect. 3, such as the walk and bound. Others, such as the pace
and trot, require two, assuming the mapping of homologous
contralateral legs to nonadjacent oscillators, still others such
as the gallops may require three (discussed below), and a
canter (see Appendix, Special Case IV) requires four. As
discussed above, previous, presumably simpler models did
not generate a gallop, and required a phasic input or rewiring
to generate a trot. The increased complexity of component
neuronal elements naturally leads to a more complex PRC
with more peaks and valleys, thus creating the potential for
some of the modes requiring multipleφ values to exist –
hence the utility of more complex neuronal oscillators in
models of pattern generation. For example, if the depen-
dence ofs and c on q (see Sect. 2) in our model is turned
off, the PRC becomes less complex, and the circuit is less
likely to exhibit the galloping mode.

There are two potential mappings of the legs onto the
oscillators of the ring, besides the one that we have chosen.
In one, where diagonal contralateral legs are not adjacent in
the ring (like Fig. 11b, but with unidirectional coupling), a
rotary gallop sequence replaces the walk and the trot changes
places with the bound. In the other, in which ipsilateral legs
are mapped to nonadjacent oscillators (like Fig. 11d), a trans-
verse gallop sequence replaces the walk and the pace and
the bound exchange places. We chose the mapping that pro-
duces the walk since it is the only one of the three that
produces the correct sequence for the oscillatory mode with
a relative phase of 0.25 between successive legs. The effect
of unidirectional versus bidirectional coupling is to break
the symmetry between gaits that correspond to an opposite
sense of rotation around the ring, such as the walk and the
lateral walk in the scheme that we have chosen.

Some quadrupeds show a preference for a trot over a
pace (or for a transverse versus a rotary gallop), whereas our
ring model predicts that a pace would always coexist with
a trot (see Appendix, Special Case IIIa), and as rotational
variants, neither would be statistically preferred (the same
holds for the gallops). One explanation for these discrepan-
cies is that in a real quadruped, a deviation from identical
oscillators or identical coupling could break the symmetry of
the ring sufficiently to favor one of what would otherwise be
equivalent rotational variants. The shape of the PRC curve
is somewhat sensitive to the magnitude and kinetics of the
synaptic coupling, but varying the delay times between oscil-
lators may be a simpler and more effective way to break the
symmetry since adding a delay predictably shifts the PRC
curve right or left by the magnitude of the delay. For exam-
ple, if the delay times in the diagonal contralateral pathways
were slightly different from those of the ipsilateral path, it
might be sufficient to bias the system to favor a trot or a
pace, without losing the walk and gallop at other stimulus
intensities. Slightly nonidentical oscillators could work as
well.

Clearly, the ring circuit is a simplification of the spinal
pattern generator for quadruped gait generation. For exam-
ple, it does not include coupling between homologous con-
tralateral legs. If our hypothesis that gait transitions are an
emergent property of the nonlinear dynamics of the system
is correct, a low-order model such as ours may nonethe-
less capture certain essential aspects of the physiological
circuit. Stein (1976) has suggested that the mathematics of
coupled oscillators, and the PRC in particular, should be
utilized in the design and analysis of interlimb coordination.
Our analysis predicts the PRC required at different levels of
stimulus intensity for a ring circuit design for the control
of quadrupedal locomotion. If a preparation could be de-
veloped in which the spinal cord oscillators associated with
each limb could be studied in isolation so that a PRC could
be generated, the predictions in Fig. 9 could be tested. In ad-
dition, perhaps the design method we have suggested could
be applied and tested in legged robots.
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Appendix

Definitions:φ1 = θ1 − θ2; φ2 = θ2 − θ4; φ3 = θ3 − θ1; φ4 = θ4 − θ3; θi
indicates the phase of an oscillator relative toθ1 (but any other reference
would work as well). An asterisk indicates that there are rotational variants.
The phasic relationships for only one of four variants is shown.

General case:φ1 + φ2 + φ3 + φ4 = n, wheren ∈ (0, 3)

Special case I:φ1 = φ2 = φ3 =φ4 = φi
pronkφi = 0.00,n = 0 θ1 = 0.00; θ2 = 0.00; θ3 = 0.00; θ4 = 0.00
transverse walkφi = 0.25,
n = 1 θ1 = 0.00 ; θ2 = 0.75; θ3 = 0.25; θ4 = 0.50

boundφi = 0.5,n = 2 θ1 = 0.00; θ2 = 0.50; θ3 = 0.50; θ4 = 0.00
lateral walkφi = 0.75,n = 3 θ1 = 0.00 ; θ2 = 0.25; θ3 = 0.75; θ4 = 0.50
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Special case II: φi /= φj , φi = φk = φl
staccato t. walk∗ 3φi + φj = 1 θ1 = 0;θ2 = −φi; θ3 = φi; θ4 = φi + φj

0 < φj <
1
3

staccato gallop∗ 3φi + φj = 2 θ1 = 0;θ2 = −φi; θ3 = φi; θ4 = φi + φj
1
3 < φj <

2
3

staccato l. walk∗ 3φi + φj = 3 θ1 = 0;θ2 = −φi; θ3 = φi; θ4 = φi + φj
2
3 < φj < 1

transitional∗

φi = 1
3 , φj = 0 θ1 = 0;θ2 = 2

3 ; θ3 = 1
3 ; θ4 = 1

3

φi = 2
3 , φj = 0 θ1 = 0;θ2 = 1

3 ; θ3 = 2
3 ; θ4 = 2

3
Note: In-phase oscillators are adjacent in the ring.

Special case III:φi + φj = n
2 , φk + φl = m

2 ,
m+n

2 ∈ [0, 3]

Special case IIIa:φi + φj = 0, φk + φl = 1,φi = φj = 0, φk = φl = 0.5
trot φ1 = φ4 = 0.5, φ2 = φ3 = 0 θ1 = 0;θ2 = 0.5;θ3 = 0;θ4 = 0.5
pace φ1 = φ4 = 0, φ2 = φ3 = 0.5 θ1 = 0;θ2 = 0;θ3 = 0.5;θ4 = 0.5
tripod∗ φ1 = φ3, φ2 = φ4 or θ1 = 0;θ2 = 0;θ3 = 0;θ4 = 0.5

φ1 = φ2, φ3 = φ4
Note: If any of the above modes exist, that implies the existence
of the other two, as well as the pronk and the bound.

Special case IIIb:φi + φj = 1, φk+φl = 1, φi = φj = 0.5, φk /= φl
(observedφk ≈ 0.4)
gallop∗ φ2 = φ3 or φ1 = φ4 θ1 = 0;θ2 = −φ1; θ3 = 0.5;θ4 = 0.5− φ1
half-bound∗ φ1 = φ3 or φ2 = φ4 θ1 = 0;θ2 = 0.5;θ3 = φ3; θ4 = 0

or φ1 = φ2 or φ3 = φ4
Note: If either of the above modes exist, that implies the existence
of the other, as well as the bound.

Special case IIIc:φi + φj = 1, φk + φl = 1,φi = φj , φk = φl
assymetric
bound∗ φ1 = φ3 or φ1 = φ4 θ1 = 0;θ2 = φi; θ3 = φi; θ4 = 0
assymetric
half-bound∗ φ1 = φ2 θ1 = 0;θ2 = φi; θ3 = φi; θ4 = 2φi
Note: If either of the above modes exist, that implies the existence
of the other.

Special case IV:φi + φj + φk + φl = 1, φi /= φj /= φk /= φl

canter φ1 = 0.2, φ2 = 0, φ3 = 0.5, φ4 = 0.3 θ1 = 0; θ2 = 0.8; θ3 = 0.5;
θ4 = 0.8
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