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Summary

Physiological limitations affect an organism’s capacity necessarily resolve which factors actually impose
to acquire and expend energy over long periods of activity. metabolic ceilings in small mammals, which precludes a
These limitations could be related to the central clear understanding of the ecological and evolutionary
machinery used for acquiring, processing and allocating consequences of design constraints on energy budgets. We
energy, or by the energy-consuming machinery. Another propose that the following steps are necessary to identify
possibility is that the capacities of central and peripheral the physiological limits on sustained metabolic rate: (1)
organs and tissues are co-adjusted, implying an optimized combining peak energy demands to differentiate a central
design. Given the important consequences that rates of limitation from a peripheral limitation; (2) pushing the
energy expenditure have on many ecological aspects of animals to their physiological limits (e.g. asymptotic food
animal life, we need to understand which factors impose intake); (3) testing for a central excess capacity (if the
ceilings on sustained metabolic rate. Ceilings on limitis set peripherally), or a peripheral excess capacity (if
sustainable energy expenditure represent the limit below there is a central limitation); (4) utilizing different levels of
which all the activities performed by an individual must  energy demand to test for symmorphosis.
occur. There have been many studies of design constraints
on energy budgets, but the different procedures used to Key words: sustained metabolic rate, energy budget, physiological
identify the type of physiological limitation do not limit, central limitation, peripheral limitation, symmorphosis.

Introduction

A major goal of physiological and evolutionary ecology isare limited to a lower level than rates of expenditure over
to understand the intrinsic and the extrinsic factors that imposghorter periods. In fact, SusMR are almost fivefold lower than
limitations on an animal’s energy budget (McNab, 2002). It ishort-term (burst) expenditures, and they rarely exceed the
well known that there is a negative relationship between theesting levels by sevenfold, in contrast to burst rates, which can
rate of energy expenditure and the duration of an activityeach values 36 times above resting levels (Bozinovic, 1992;
performed by an organism (Weiner, 1989; Peterson et aBundle et al., 1999). For small mammals in particular,
1990; Speakman, 2000). On the one hand, burst metabolic raesymptotic ceilings on SusMR could limit individual
of activity or thermoregulation, performed over short periodseproductive effort (since number and quality of offspring
(i.e. minutes or hours), cannot be sustained indefinitely becaudepends on milk production and quality; Knight et al., 1986;
organisms are not in energy balance during the exertioRogowitz and McClure, 1995; Rogowitz, 1996, 1998), activity
(Hammond and Diamond, 1997). In fact, an important part ofi.e. foraging, escape from predators), thermoregulatory
energy expenditure is fueled by the body’s reserves, which aoapabilities and survival to long-term cold exposure
depleted while the activity is maintained. On the other handKonarzewski and Diamond, 1994; McDevitt and Speakman,
during longer activity periods (i.e. days or weeks), energyl994a), as well as geographic distributions and breeding
expenditure must be fueled by concurrent energy intakeanges. This is because ceilings on sustainable energy
known as the sustained metabolic rate (SusMR), defined agpenditure represent the upper limit for all energy consuming
‘time-averaged energy budget that an animal maintains oveactivities performed by an individual. Given the ecological and
times sufficiently long that body mass remains constargvolutionary consequences that sustained energy budgets have
because time-averaged energy intake equals time-averaged many aspects of animal life, it is important to determine
energy expenditutrdHammond and Diamond, 1997). which factors impose ceilings on SusMR.

Rates of energy expenditure sustained over longer periodsit has frequently been suggested that energy acquisition,
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transformation, absorption, allocation and expenditure are The main evidence for the proposal that energy budgets are
intrinsically limited, and that these intrinsic design constraintgentrally limited is that the observed body-mass-independent
act before potential extrinsic limitations such as foodinkage between resting and sustained metabolic rates (RMR
availability (Karasov, 1986; Wieser, 1991; Stearns, 1992and SusMR, or Field Metabolic Rate) are not linked to body
Weiner, 1992; Speakman, 2000). Drent and Daan (198Ghass (Drent and Daan, 1980; Kirkwood, 1983; Weiner, 1989;
suggested that a ‘prudent parent’ should not allocate more th&peakman, 2000). It is argued that animals with higher
four times its basal level of energy expenditure to reproductiorsustained energy expenditures support their demand by
Since this seminal work there have been several studies of tereasing food consumption which, at the same time,
design constraints on energy budgets (e.g. Weiner, 199Ricreases the mass of the central organs (i.e. liver, kidneys,
Speakman, 2000). There are three principal hypotheses beart, lungs and small intestine). Given the high specific
explain the physiological limitation on energy budgets. (1) Thenetabolism of these organs and their direct contribution to the
‘central limitation hypothesis’, where the shared centraRMR (Schmidt-Nielsen, 1995), then RMR and SusMR should
machinery limits SusMR; (2) the ‘peripheral limitation increase jointly. There is abundant evidence of a phenotypic
hypothesis’, where the energy-consuming machinery limits thénkage between both traits, but the data are controversial
SusMR; (3) symmorphosisénsuTaylor and Weibel, 1981), (Koteja, 1987, 1991; Nagy, 1987; Daan et al., 1990; Peterson
where the capacity of the central machinery closely matchext al., 1990; Bryant and Tatner, 1991; Lindstrom and Kvist,
that of the peripheral tissues. 1995; Ricklefs et al., 1996; Hammond and Diamond, 1997;
It should be noted that firstly, we are consideringSpeakman, 2000). Furthermore, there is abundant evidence of
physiological constraints and not restrictions imposed by thphenotypic flexibility in central organ mass, and the
environmental food supply (see Speakman, 2000). Secondlgonclusions from these observations are more generally agreed
recognized authors in the field have already extensivelgBozinovic et al., 1990; Daan et al., 1990; Hammond and
reviewed the hypotheses proposed (Peterson et al., 199Diamond, 1992; Hammond et al., 1994; Konarzeswski and
Weiner, 1992; Hammond and Diamond, 1997; Speakmariamond, 1994, 1995; Speakman and McQueenie, 1996;
2000), but we contend that particular assumptions, as well &erting and Austin, 1998; Konarzweski et al., 2000). It means
various empirical procedures used to identify the type othat a high energy budget depends on expensive metabolic
physiological limitation, have not been completely correctmachinery (Diamond, 1993), which could explain why SusMR
Consequently, it is not entirely clear which factors imposelo not exceed RMR values by more than sevenfold (Hammond
metabolic ceilings in small mammals, precluding a cleaand Diamond, 1992).
understanding of the ecological and evolutionary consequencesMany studies have assessed the possible link between
of design constraints on energy budgets. Thirdly, we will onhfSusMR and RMR, and demonstrated the important
discuss limits on SusMR, not on sustained metabolic scopmnsequences of it (Speakman, 2000). The existence of such a
(SusMS) (i.e. potential trade-off aspects of intake with futurdink would provide a theoretical framework for understanding
life history traits) (for a review, see Speakman, 2000). variations in RMR among species, and also evidence to
support the ‘energy assimilation model’ for the evolution of
endothermy (Koteja, 2000), although it would not disprove the
The central limitation hypothesis aerobic capacity model (Crompton et al., 1978; Bennet and
The central limitation hypothesis (Kirkwood, 1983; Weiner,Ruben, 1979; Bozinovic, 1992; Hayes and Garland, 1995;
1989, 1992; Peterson et al., 1990; Koteja, 1996b) proposes titiben, 1995). In addition, if RMR and SusMR are indeed
sustained metabolic rates are limited by the central machinelyked, one could argue that high RMR would allow high
involved in acquisition, processing and allocation of energySusMR, which could explain differences observed in activity
resources and waste products. Thus, metabolic limits apmatterns and life history traits (McNab, 1980; Hayssen, 1984;
independent of the way in which energy is expended, so tiEhompson and Nicoll, 1986; Derting and McClure, 1989;
same metabolic ceiling will be reached regardless of the moddarvey et al., 1991; Hayes et al., 1992; Thompson, 1992;
of energy expenditure, and peripheral organs always possdésteja and Weiner, 1993; Johnson et al., 2001a).
an excess capacity. Finally, the central processing and transport organs may be
Although there are different basic processes of centralble to supply energy and nutrients faster, the peripheral organs
limitation (Speakman, 2000), most authors have suggested thabuld not be able to convert this increased supply into work
the capacity of energy assimilation is the principal limit forand heat at the same rate. SusMR would therefore be limited
sustainable energy budgets (Weiner, 1992). For small mammais, the site of energy use (i.e. peripheral limitation).
one way to confirm the presence of metabolic ceilings, and at
the same time to determine if they are centrally limited, is
provided by laboratory studies in which animals,dddibitum The peripheral limitation hypothesis
are forced to reach their maximal SusMRs under different modes Even though Weiner (1992) proposed thatiternative
of energy expenditure (e.g. lactation, thermoregulation, activityproposals of central physiological limits are rgréhe actual
This procedure tests whether the metabolic ceilings for eadvidence seems to show that peripheral limitations are more
activity reach the same value, as predicted by this hypothesisthe rule than the exception (see, for example, Hammond and
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Diamond, 1997). Hence, comparison of SusMR values foa general hypothesis of economic design (Weibel et al., 1998;
different rodent species under conditions of lactation and col#/eibel, 2000). Optimal design means an almost perfect match
exposure, challenges the central limitation hypothesis and iteetween structure and function (Weibel et al., 1991; Weibel,
apparent generality, as noted by Weiner (Kenagy et al., 1989b998). As a result, the structural trait becomes the factor that
Hammond and Diamond, 1992, 1994; Hammond et al., 1994ets the limit of functional performance (Weibel, 1998, 2000).
1996; Konarzewski and Diamond, 1994; Koteja et al., 1994An important prediction of this principle is that if functional
Koteja, 1996a; McDevitt and Speakman, 1994a,b; Speakmareeds change, then structural components must change
et al., 2001). accordingly. This is because building and maintenance of
Peripheral organs and tissues may be limited by the ratgructures over what is actually needed is costly (DeWitt et al.,
at which ATP is generated and mobilized at these site$998).
(Speakman, 2000). However, a very important exception Optimization models in biology make assumptions about (i)
in mammals is the heat generated by non-shiveringonstraints acting on phenotypes, (ii) the optimization function
thermogenesis in brown adipose tissue, which is one of thend (iii) heredity (Maynard Smith, 1978), so is it possible for
most important mechanisms for thermogenesis in smafiatural selection to lead to symmorphosis? In other words, is
mammals in seasonal habitats (e.g. Heldmaier, 1993; Merritt possible for natural selection to produce an optimal design?
et al., 2001). The peripheral limitation hypothesis predict@Answers to both of these questions have been as controversial
different metabolic ceilings for different modes of energyas the optimization models (e.g. Gould and Lewontin, 1979;
expenditure. This is because limits are set by the particul&@arland and Huey, 1987; Dudley and Gans, 1991; Garland,
limitations of the tissues and organs using the energy, whered898; Gordon, 1998). In particular, Garland (1998) and
central organs have an excess capacity (Hammond am@brdon (1998) point out reasons for refuting symmorphosis:
Diamond, 1997). Thus, as for the central limitation hypothesigj) organisms must perform different functions simultaneously,
a key approach to empirical evaluation of peripheral limitationsvhich probably creates constraints that prevent them from
on SusMR is provided by laboratory studies in which animalseaching an optimal solution for all processes; (ii) biological
fed ad libitum are pushed to their maximal SusMRs undematerials have limitations related to their own histories; (iii) in
different modes of high energy expenditure (e.g. lactationgeneral terms, environments are always changing, and natural
thermoregulation and activity). selection often cannot follow the rhythm of change; and finally
It has been proposed that different patterns of energfiv) genetic drift can be an important factor in some
expenditure among species (i.e. centbkusperipheral, and populations. Nevertheless, even if animals are not optimally
within this latter category, differences in levels and modes adesigned, Garland (1998) pointed out that optimization models
energy expenditure) could be related to each species’ lifesan be useful tools for understanding the evolution of
history strategy (Koteja and Weiner, 1993; Koteja, 1995physiological systems. In this sense, they can indicate the
1996a; Hammond and Diamond, 1997). Accordingly, there i%est’ design that an organism could achieve, and therefore the
an implicit assumption that SusMR are adaptive. However, atoncept is useful as a reference for understanding the reasons
present it is difficult to confirm this assertion (but see Kotejdor departure from optimality. To summarize, the main reason
et al., 2000). why symmorphosis would not be widespread is that particular
It is possible that organisms do not have excess capacitiedructures, and even systems, are often used in different
and the capacity of central organs to supply energy has evolvéghctions, making it unlikely that optimization could be
to match expenditure capacity in peripheral tissues. Thiachieved for each one (Lindstedt and Jones, 1987).
hypothesis, with no limiting step on SusMR, but with optimal How can we test for symmorphosis? In accordance with
organism design, is called symmorphogsiensuTaylor and  Taylor and Weibel (1981) and Weibel and collaborators
Weibel, 1981). (1998), the limit of the functional process must be determined.
Furthermore, it must be established whether this limit is related
to the organism’s design. A clear description of how to do this
The optimal design debate: symmorphosis is given by Weibel (2000). In brief, the first step is a
Taylor and Weibel (1981) proposed the principle ofquantitative physiological study in which, with different levels
symmorphosis, based otiné firm belief that animals are built of demand, functional performance is pushed to its maximum
reasonably Basically, this principle states that no extra(i.e. its limit). The next step would be a morphometric study
structure is formed and maintained unless it is required tof design properties related to functional capacities, followed
satisfy an organism’s functional needs (Taylor and Weibelby evaluation of any agreement between the functional
1981). In fact, symmorphosis is definedastate of structural performance and the morphometric parameters. The original
design commensurate to functional needs......,whereby tlag@proach by Taylor and Weibel (1981) was between species,
formation of structural elements is regulated to satisfy but notising adaptive variation (i.e. animals with the same body size
exceed the requirements of the functional sysf€aylor and adapted for different levels of functional performance) and
Weibel, 1981). Although this principle was first proposed in @allometric variation (i.e. animals of different body mass, in
study of the relationship between structure and function in th&hich scaling of morphometric structures should be similar to
mammalian respiratory system, it has since been establishedfaactional requirements), but the concept of symmorphosis
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could be evaluated within a particular species, using a similaize... (Gross et al., 1985; Bozinovic et al., 1990; Loeb et al.,
protocol. As mentioned above, in the context of physiological991; Toloza et al., 1991; Hammond and Diamond, 1992,
limitations on SusMR, the symmorphosis principle predicts 4994; Hammond et al., 1994; Konarzewski and Diamond,
match between central and peripheral organs and tissues. I894). Nevertheless, this assertion does not validate the central
test for this match, SusMR should be determined unddimitation hypothesis. A change in morphology of the digestive
different levels of demand (e.g. SusMR at temperatures dfact with increasing energy demands, or a decrease in food
—10°C, 0°C and 10°C during cold exposure). The next step gguality, does not mean that the digestive tract is the limiting
to evaluate the adjustment between the different SusMRgep to energetic expenditure. It simply shows that the digestive
obtained, and the morphometric parameters of central ardact is plastic enough to change according to demand, and that
peripheral organs and tissues (e.g. the dry mass of these orgémere is a cost for supporting high performance levels when
might be considered a good first approximation). Neverthelesthese levels are not required (DeWitt et al.,, 1998). So, a
we must bear in mind that a better quantitative approach ossible reason why these organs grow under high food intake
neccesary to test for symmorphosis (Weibel, 2000). or energy requirements is that they possess limited functional

Evidence in favor of symmorphosis (e.g. Taylor et al., 1996reserves under conditions of low demand (Hammond and
Weibel et al., 1996; Suarez, 1998; Bundle et al., 1999; Chappkbnarzweski, 1996; Hammond and Kristan, 2000). Similarly,
et al., 1999; Hammond et al., 2000; Weibel, 2000) is af metabolic ceilings reach the same value under different
abundant as the evidence against it (e.g. Garland and Huewodes of expenditure, most authors would agree that a central
1987; Diamond, 1992; Diamond and Hammond, 1992limitation exists. However, this procedure does not exclude the
Alexander, 1998; Ricklefs, 1998). At present the optimabpossibility of a peripheral limitation on SusMR because, by
design debate remains unresolved. Furthermore, even whehance, different modes of energy expenditure might have
evidence against symmorphosis is strong, it does not invalidaégual values. A way of discriminating between both
the usefulness of the concept (e.g. Diamond, 1992; Diamonrd/potheses is through a combination of peak energy demands.
and Hammond, 1992) and, as Diamond and Hammond (199H)central limitation really is the cause of the metabolic ceiling,
stated: the concept is worth posing not because we believe @ne would expect a conflict in energy allocation when different
to be literally true, but because only by posing it as a testeableigh-energy-demanding activities are being performed
hypothesis of economic design can one hope to detect whersiitnultaneously. Conversely, if limits on SusMR are set
breaks down, and to identify the interesting reasons for itperipherally, no conflict in energy allocation would be
breakdown expected since central organs possess an excess capacity.

With the exception of a few studies (Hammond et al., 1994;
Sorting out the evidence Derting and Austin, 1998; Hammond and Kristan, 2000; Johnson

As mentioned above, SusMR refers to the energy expendituesnd Speakman, 2001), this topic (i.e. design constraints and
that can be sustained over long periods of time by concurrenonflict among demands) has not been explicitly approached,
energy intake while animals are in mass balance. Consequentiyen though it plays a key role in determining, at least
food intake has been extensively used as a measure of SusMifeoretically, the signs and magnitudes of genetic correlations
This does not present a problem when most food is metabolizeainong high-energy-demanding activities and, consequently,
as occurs in cold acclimation (Konarzweski and Diamondtheir response to natural selection (Stearns et al., 1991; Stearns,
1994; Koteja, 1996; McDevitt and Speakman, 1994a), and ih992). In particular, the response of any two genetically
these cases, limits on intake could be considered limits ororrelated traits to natural selection is dependent on the sign of
expenditure. However, during lactation (a widely used stressotfie correlation (Stearns et al., 1991). If the correlation is negative,
not all ingested food is metabolized. In fact, an important pad positive response to selection in one trait would generate a
is exported as milk (i.e. it does not represent an expengiture negative response in the other. Thus a central limitation on
s§ (Johnson et al., 2001b). In this case, the actual level @usMR could generate a negative correlation among different
energy expenditure would be expected to be lower thaactivities using energy in parallel, with the consequences
expenditure estimated from food intake, as has beemanifest in the response to natural selection. Furthermore,
demonstrated in a few scant studies (Johnson et al., 200%b; many aspects of ecology and evolutionary biology (e.g.
Johnson and Speakman, 2001; Scantlebury et al., 2000). Themechanistic aspects of life history evolution) (Stearns, 1992), an
even though food intake in animals subjected to variousmplicit central limitation, in the form of the Principle of
stressors may be different (i.e. possible peripheral limitation)Allocation (Cody, 1966), is always assumed. Nevertheless, the
the real expenditure may be equal (i.e. possible centraresence of peripheral limitations could challenge this view and
limitation). Certainly, more work is needed to determine thdorce it to change or to be restricted to particular situations (i.e.
extent to which these two estimates differ. when central limits are in fact operating).

In the particular case of the central limitation hypothesis, Even though methodology that combines energy demands
Koteja (1996a,b) proposed thathe alimentary bottleneck might distinguish between central and peripheral limitations, it
hypothesis is supported by numerous observations ardbes not exclude the possibility that structure and function
experiments demostrating that changes in current energgdjust to the new conditions (i.e. symmorphosis). The central
demand or food quality are associated with changes of gwtnd peripheral limitation hypotheses assume that organisms
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Fig. 1. Summary of the empirical procedure used to test for physiological limits on SusMR and some possible sources sifl&roal s
are representative estimates of the sustained activities (i.e. lactation or cold exposure). In the lower graph eitretaofati@stvities could
have the greater value.

have evolved with certain limiting steps in energy expendituredigestive efficiency be maintained under these high-energy-
while other steps have kept unused reserve capacities. In tliismanding conditions? One possibility is that the small
sense, it is not enough to demonstrate the site of limitation; oretestine has excess capacity, and efficiency can therefore be
must also demonstrate the existence of excess capacity in tmaintained in spite of the increase in food intake. In this case,
central machinery (if the limitation is set peripherally), oraccording to the symmorphosis principle, design is not
excess capacity of peripheral organs (if the limitation ionsidered to be optimized due to tsessapacity. Another
central) (Fig. 1). This has only been tested on a few occasionspssibility is that the small intestine grows rapidly enough
however, and always using laboratory species (Toloza et atlyring lactation to match the increasing food intake. Here,
1991; Diamond and Hammond, 1992; Hammond andptimal design is implicated, because there is an adjustment
Diamond, 1992; Hammond et al., 1994; Konarzewski andetween structure and function. In general, both kinds of
Diamond, 1994), so we are not able to draw firm conclusionshanges are happening (Toloza et al., 1991; Diamond and
as to whether limits are set centrally or peripherally. Hammond, 1992; Hammond and Diamond, 1992). As shown,
Considerations of optimal design necessitate caution ia morphological change in accordance with changes in
interpreting changes (morphological or physiological)functional needs seems to be the result of an optimal design;
associated with phenotypic plasticity. At first glance, it mayhowever, a detailed analysis could show another point of view,
seem that such changes are a consequence of symmorphosithat is, excess capacities should indicasellaoptimaldesign.
optimal design (e.g. Lindstedt and Jones, 1987; Weibel, 1998); The presence of a link between RMR and SusMR is the
however, more detailed inspection may eliminate optimaprincipal idea behind the proposal of a central limitation on
design (Toloza et al., 1991; Diamond and Hammond, 1992gnergy budgets (Speakman, 2000, and references therein).
For example, food intake by lactating females increases almodbwever, we contend that caution is needed when considering
linearly with the total mass a mother must support (mass dhe argument that this link is determined by a central limitation.
mother and young), plus time of lactation, because each youhg mammals, the greatest increase in energetic demands occurs
requires more milk as it grows (e.g. Hammond and Diamondjuring lactation (Millar, 1978; Mattingly and McClure, 1985;
1992). Although there is an increase in food intake following<enagy, 1987; Kenagy et al., 1989a,b, 1990), and also cold
parturition, however, the digestive efficiencyMifis musculus exposure (e.g. Konarzweski and Diamond, 1994; Merritt et al.,
does not change either with number of young or the duratio2001; Nespolo et al., 2001). Both activities result in an increase
of lactation (Hammond and Diamond, 1992). How canin food consumption (Hammond et al., 1996). This involves



2968 L. D. Bacigalupe and F. Bozinovic

processing (i.e. digestion, absorption and transport) of great&®92; Martin and Palumbi, 1993; Daan et al., 1996; Finkel and
amounts of nutrients, which could produce hypertrophy of thélolbrook, 2000; Speakman, 2000). However, the evidence for
central organs associated with these processes and a resultaig trade-off (i.e. energy expendituversusfitness) is not
increase in RMR. In this respect, SusMR and RMR may beonclusive (Tuomi et al., 1983; Hare and Murie, 1992;
correlated, but the type of limit on SusMR (i.e. central orSpeakman, 2000). As to the second question, organisms could
peripheral) remains an open question. The observation of a lifflanction at or near their physiological limits, but are prevented
between both traits alone is not enough to confirm a centrélom doing so because of energy limitations imposed by the
limitation, nor is the absence of a link enough to support thenvironment (e.g. Stenseth et al., 1980; Speakman, 2000). At
opposite conclusion (i.e. peripheral limitation). Thus there is @resent there is insufficient evidence to offer definitive answers
need for correlational studies, complemented by experimentt these questions, and we cannot conclusively identify which
For example, values of RMR and SusMRNts musculus physiological factors may impose limits on SusMR. Hence,
(Hammond and Diamond, 1997) using different modes ofhere is a need for further studies aiming to unravel the nature
energy expenditure, provide evidence that there is an importaot the physiological limit on SusMR (i.e. central, peripheral or
correlation between the two rates, which would suggest symmorphosis) and the steps where this limit occurs.
central limitation on SusMR. However, the combined works of
Hammond and coworkers on the physiological limitations in We thank Joseph Merritt, Paula Neill, Roberto Nespolo and
white mice demonstrated that the limitation is not centraEnrico Rezende for a critical revision of the manuscript. L.D.B.
(Hammond and Diamond, 1992, 1994; Hammond et al., 1994vishes to acknowledge Patricia Nicola for comments and
1996; Konarzewski and Diamond, 1994). tremendous support during the preparation of this manuscript.
In summary, we feel that these hypotheses lack strongiso, L.D.B. acknowledges a DIPUC doctoral fellowship. This
empirical data to demonstrate that central and peripherajork was funded by Fondo Nacional de Ciencia y Tecnologia
physiological limitations hold true both in animals in the FONDAP grant no. 1501-0001, Programa 1.
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