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Abstract

Animal locomotion employs different periodic patterns known as animal gaits. In 1993 Collins

and Stewart achieved the characterization in quadrupeds and bipeds by using permutation sym-

metries groups which impose constrains in the locomotion centre called Central Generator Pattern

(CGP) in the animal brain. They modelled the CGP by coupling four non linear oscillators and

with the only change in the coupling it is possible to reproduce all the gaits. In this work we

propose to use coupled chaotic oscillators synchronized with the Pyragas method not only to char-

acterize the CGP symmetries but also evaluate the time serie behaviour when the foot is in contact

with the ground for futures robotic applications.

PACS numbers: 05.45.-a
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I. INTRODUCTION

Lately the analysis of animal gaits have regain interest in between scientist of different

areas. The moderm analysis represents the gait as cyclic patterns in the movements of

symmetrically placed limbs. A cycle means the interval between successive footstrikes of the

same foot during the dynamical process. The factor of footstrike β is the fraction of cycle

when the foot is in contact with the surface. For simplicity we assume β to be the same

for all animal feet. The relative phase of foot (φ) is defined as the fraction of cycle between

the contact of the surface of the foot of reference and another foot when this one enters in

contact with surface1. In this study the relative phase plays a crucial role to formulate the

symmetries while this is not same the factor of footstrike β, which will no be taken into

account in this work. The mammal phenotypes have evolved in two kind of gaits, bipedal

gaits where the limbs can be out of phase (walking or running) or in phase (jumping or

hopping). Quadrupedal gaits with a more complex behaviour of the realtive phase. The

natural gaits are2: Walk, the limbs move with a quarter of cycle out of phase, where there

is a quarter cycle phase difference in between both fore limbs as well as in between hind

lims, and half a cycle between diagonals. Trot, the diagonal legs move in phase and this

pair is half a cycle out of phase of the other one. Pace or Rack, the fore and hind left

or roght limbs are paired and moved half cycle out of phase in between the pairs. Canter,

the right front leg and the left hind leg move in phase, the left front leg and the right hind

leg move half a cycle out of phase in between themselves and out of phase with respect to

the first pair (it was found in horse that pattern changes from walk to trot, to canter to

gallop, when the speed increase). Bound, the fore legs move in phase, as well as the hind

legs, while they move half a cycle out of pahse. Transverse Gallop, the front and hind left

(right) legs move one quarter of cycle out of phase, the front (hind) limbs are slightly out of

phase between themselves. Rotatory Gallop, similar to the tranverse gallop but the left

and right limbs have their pattern exchange. Pronk, the four limbs move together an in

phase.

Biological model assume that the animal nrevous system contains a variety of Central

Pattern Generators3 (CPG), each oriented to specific action. For instance, the locomotion

CPG controls the rhythm of mammal gait4, in the case of quadrupedal mammals this is

modeled by a system of coupled cell where erach cell is composed by a set of neurons
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directly responsible to harmonize the movement of the leg5. A simplifield mathematical

model of locomotion CPG consists in replacing each cell by a non linear oscilator6. This

model has been studied using differnt method: bifurcation theory, numerical simulations

and phase reponse7,8,9,10.

The idea to study rhythmic patterns in animal gait using symmetries models was intro-

duced by Hildebrand9, Schoner et al11. The concept of symmetries in coupled cells as a

model for locomotion CPG in quadrupedal mammals was firt used by Collins and Stewart6.

A model for locomotion CPG for quadrupedal mammals consits in a ring of four coupled

nonlinear oscillators. Each oscillator represents a limb of the animal. The stability and

breakdown of the symmetries play an effective role in the validity of the model. Golubitsky

et al12. argued that symmetries present in above model for walk, trot and pace are not

adequade for quadrupeds, sience the trot and pace correspnd to conjugate solutions which

have same stability and they depend on initial conditions. Many quadrupeds move with

pace but do not trot (camels) or viceversa (horse), unless they are trained. In this work we

propose a different coupling mechanism in order to avoid the problem of multiple conjugated

solutions6.

The CPG is modeled by the following system of ordinary differential equations:

dXj

dt
= f(Xj) + hj(Xj−1, Xj+1) (1)

where j = 1 . . . 4 mod 4 is the index of cell, X ∈ R
n is the state vector and f : R

n → R
n

is a nonlinear velocity vector field. We defined the symmetry of ring to the permutations of

cell that preserves the coupling, that is to say a permutation σ of {1 . . . 4} numbers on the

phase space X = (X1, X2, X3, X4) is:

σX = (Xσ−1(1), Xσ−1(2), Xσ−1(3), Xσ−1(4)) (2)

then σ is a symetry of ring in

F (σX) = σF (X). (3)

where F (.) = f(.) + h(.). Then we deduced the coupling conditions they are:

hj(σXj−1, σXj+1) = hσ(j)(Xj−1, Xj+1). (4)
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If we defined [i, j] as the action to exchange Xi for Xj the symmetries of the ring are:

{ [1,4]; [2,3]; [1,2]; [4,2] }. From eq-4 we deduced h1(.) = h3(.) and h2(.) = h4(.). These

symmetries are called Type-2 by Collins and Stewart6. Another kind of symetry is called

symmetry of phase change12. Assuming that X(t) is a periodic solution with minimal period

(cycle) T, and γ represents the symmetry (ij) to permute Xi for Xj, then γ X(t) will be

a periodic solution if the trajectories {X(t)}t and {γX(t)}t coincide. Therefore the only

solution is the existence of pahse slip θ such that γXj(t) = Xj(t + θ). The pair (γ, θ) is a

spatio-temporal symmetry where θ is a phase slip. Finally we define as primary gait12, those

gaits modeled by identical output signal of each cell but out of phase.

We associated the index of cell to each limb as follow, j = 1 hind left, j = 2 fore left,

j = 3 fore right and j = 4 hind right. The possible symmetries of the primary gait for four

legged animals characterized by Type-2 arrays are:

Table 1: Simmetries asocied with gait

Gait Symmetry Group

Stopped (I, θ) (α, θ) (β, θ) (αβ, θ) D2 × S1

Pronk (I, 0) (α, 0) (β, 0) (αβ, 0) D2

Pace (I, 0) (α, 1
2 ) (β, 1

2 ) (αβ, 0) D̃D
2

Bound (I, 0) (α, 0) (β, 1
2) (αβ, 1

2) D̃F
2

Trote (I, 0) (α, 1
2 ) (β, 0) (αβ, 1

2) D̃L
2

Rotatory Gallop (I, 0) (β, 1
2) Z̃L

2

Transverse Gallop (I, 0) (αβ, 1
2) Z̃F

2

Canter (I, 0) I

TABLE I: Where α = (12)(34), β = (13)(24), αβ = (14)(23) and S1 refers to all cyclic group of

pahse slip mod 1. D represents the diedral subgroup and Z all the cyclic subgroups. The tilde

indicates the existence of phase slip symmetry. The notation 1
2 represents a half cycle out of phase.

Here we study the possibility to use a ring of coupled chaotic oscillators to produce the

locomotion of quadrupeds based on the symmetries of primary gaits using Pyragas control

theory.
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II. A CPG MODEL

Here we represented each cell by Rösler oscillators (see eq.-5) coupled using Pyragas13

method with random initial cnditions. We use Rossler chaotic oscillator since this is the

only one that have shown to synchronize to simulate the primary gait. This behaviour does

not happen for Van der Pool6 or Showalter14 oscilators even if the single oscillator reproduce

the necessary output. Primary gate is important for any digital aplication on mechanical

limb.



















dx
dt

= −(y + x)

dy

dt
= x + 0.2 y

dz
dt

= 0.2 + z (x − c)

(5)

We use a direct synchronization mechanism where the master variable is “y” and other

one are the slave varibles. We use a delay time serie for obtain delay feedback value. Then

coupling functions are:

hi(Xi, Xi+1, Xi−1) = ki (yi−1(t − τ) − yi(t))

+gi (yi+1(t − τ) − yi(t))
(6)

The symmetry conditions associated to a Type-2 array limits the range of ki and gi values.

In this case g1 = k2, g2 = k3, g3 = k4, g4 = k1, k1 = k2 and k4 = k3. An esquematic form

it is depected in figure-1. The delay time τ ∈ N, and the nonlinear constan c (see eq.-5)

play an important role in the wave pattern obtained. We consider as output of each cell

(oscilator) the value of the variable xi(t), where it will be compouse by threshold function:

Q(x) =







0 si x > 2.0

1 si x ≤ 2.0
(7)

This defined a mapping from phase space into binary matrix space of 2x2. We asso-

ciate the value “1” to the state “limb on ground” and the value “0” to the state “limb in

movement”, not on the ground. Finally the matrix representation is from now on:

C =





Fore Left Fore Right

Hind Left Hind Right





Therefore the gait is nothing but the sequence of matrices of succesive states representing

the symmetry of CPG. For instance the pronk is give by the sequence of matrices:
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









1 1

1 1



 ;





0 0

0 0











This allows a clearer visualization of the symmetries of primary gait. Although we lose

the time interval between different patterns. This is highly important for application in

robotics, not only it conditions actuator answers, also for the fact that mechanical inner

may introduce undesirable instabilities. This is the reason that we have to analyse the time

each pattern stays in periodic sequence.

We consider two type of ad hoc combinations for the coupling constants, which are the

most represntatives in between the values tried. We call SA model when k1 = k3 = 0.1 and

k2 = k4 = 0.001, SB a k1 = k3 = 0.1 and k2 = k4 = −0.001. Those values were selected

under the assumption of strong coordination between the limbs associated to each cerebral

hemisphere, while they are weakly correlated when they belong to different hemisphere.15

FIG. 1: Cell coupling diagram.
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III. NUMERICAL RESULTS

There is a dependence of the output, on the time delay τ , which is quiet robust under

variations of the parameter c (see eq-5 ), and it is independent of the model used, SA or

SB. There is a change of state as a function of the time delay, which follow the order Chaos

→ Periodic Oscillations → Stable Fixed Point → Primary Hopf Bifurcation → Secondary

Hopf Bifurcations to Chaos when τ increases from zero. This can seen in Fig-2, where we

plot the maximum Lyapunov exponet of the systems versus τ . Since it is necessary to have

a stable time interval in between patterns, we restrict ourselves to the interval 6 ≤ τ ≤ 38.
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FIG. 2: Maximum Lyapunov exponent verus delay.

A. SA Coupling

For 6 ≤ τ ≤ 13, the periodic gait obtained is:










1 1

1 1



 ;





0 0

0 0










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which corresponds to the pronk and the symmetry is D2. On the other hand for τ = 14

the limit cycle is not stable any longer ant it appears an asymptotic stationary state, which

produces the single sequence correspond to the symmetry D2 × S1, therefore a stop, since

all limbs are on ground. For τ = 34, the fixed point loses its stability and it becomes

unstable, where the orbits converge to a single limit cycle. The pattern found for the delay

34 ≤ τ ≤ 38 is :










0 1

1 0



 ;





1 1

1 1



 ;





1 0

0 1



 ;





1 1

1 1











This has a symmetry D̃L
2 , which corresponds to the gait trot. In this case each step

involves the movement of all the limbs, gait which is only observed in havy quadruopeds,

above 1 ton, such as girafes and buffalos6. We could not find any other patterns in this

interval of time delay.

B. SB Coupling

For 6 ≤ τ ≤ 13 the coupled chaotic system oscillate in a stable limit cycle, which in this

case produce the patterns:










1 1

0 0



 ;





1 1

1 1



 ;





0 0

1 1



 ;





1 1

1 1











which has symmetry D̃F
2 and corresponds to a gait bound. We should mention that the

true bound as the one observed in siberian squirrel6 implies the state of all limbs on air. On

the other hand in this case all four limbs are on the ground in order to generate another

step which does not exist in nature. This drawback, we resolve applying “not” operator

each matrix. As in the SA case, for 14 ≤ τ ≤ 32 the coupled system has stable fixed point

and the limit cycle becomes unstable, which correspond to stop. For τ = 33 the fix point

become unstable and a stable cycle appears producing the patterns:










1 1

1 1



 ;





1 0

1 0



 ;





1 1

1 1



 ;





0 1

0 1











which corresponds to gait pace with symmetry D̃D
2 . As describes above the horse never

sets all four limbs on the ground, then applying “not” operator each matrix, we have resolved
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it. For this coupling the gait is not structurally stable for all time delay values. From τ = 34

until 4 τ = 37 the gait changes to another periodic pattern:











0 1

1 1



 ;





1 1

1 0



 ;





1 0

1 0



 ;





1 0

1 1



 ;





1 1

0 1



 ;





0 1

0 1











With symmetry {(I, 0) (α, 2
3
) (β, 2

3
)}. This symmetry does not correspond to any primary

gait observed in nature. For τ = 38 the system generates again a gaite like pace.

IV. CONCLUSIONS

Pyraga’s direct synchronization (see eq 6) is a novel coupling mechanism between cell for

Type-2 networks when it is used as CPG model. Within this we can avoid the conjugate

undesirable solutions. But no natural patterns appear in SB model. Also we can not look

for canter and transverse gallop gaits. This network type is not adequately for a natural

GCP model. However it is useful as an artificial CPG mechanism in robotic science.
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