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Summary

Although there is much data available on mammalian components of the force, in good agreement with
long-bone allometry, a theory explaining these data is still experimental data. The model also accounts for other
lacking. We show that bending and axial compression are important features of long-bone allometry.
the relevant loading modes and elucidate why the elastic
similarity model failed to explain the experimental data.
Our analysis provides scaling relations connecting bone Key words: bone, allometry, mammals, stress, buckling, locomotion,
diameter and length to the axial and transverse muscle, force.

Introduction

Mammalian long-bone allometry is commonly discussed idevels are kept at a safe margin. Euler buckling is an elastic
terms of the allometric exponentsand | that relate bone instability that occurs when the axial force acting in a rod
diameterD and lengthL to body mas$ via the power laws: overcomes a certain threshold. In this paper we show that

d | mammalian long bones are not slender enough to buckle, and

DesMeandL <M, @ that long-bone allometry is governed by the need to resist
where M varies over 6 orders of magnitude. McMahon’sbending and compressive stresses. We propose a model, based
proposal, known as the ‘elastic similarity model’ (ESM), thaton the requirement to maintain safety factors to yield, which
Euler buckling is the constraint determining the scaling ofredicts scaling exponents in agreement with data and
long-bone geometry, as well as other structural aneélucidates various aspects of long-bone allometry, such as
physiological variables (McMahon, 1973, 1975a), has sdiifferential allometry. Our work, in addition to papers by West
the direction of much subsequent work. Although someet al. (1997, 1999), shows that allometric laws in biology can
experimental support was found in ungulates and antelopé®& understood on the basis of the interplay between geometric
(McMahon, 1975b; Alexander, 1977), the predicted exponentand physical constraints.
are not in agreement with larger data sets embracing a broadeiNote that, although the ESM was formalized in terms of end-
range of masses (Alexander et al., 1979b; Biewener, 1983maded columns that may fail in Euler buckling, McMahon
Christiansen, 1999a,b; Polk et al., 2000). While the limitatio1975a) derived the same scaling relations for a beam subject
of the elastic similarity model is well documented (Alexandetto pure bending. He considered a rod supported on its
et al., 1979b; Biewener, 1983a; Economos, 1983; Castiellextremities and subject to bending by a force proportional to its
and Casinos, 1990; Christiansen, 1999a,b; Currey, 2002), theeight, and showed that if different-sized columns maintain
physical grounds for this remain unknown. L<D2/3, the deflection at the ceni@divided by the length is

Mammals adopt several strategies to avoid the mechanicképt constant (McMahon, 1975a). In this sense, the ESM holds
consequences of large size. Biewener (1989, 1990, 1991) hthait elastic deflections of long bones are self similar across
shown that large mammals keep bone stress constant throudjfferent sizes. This second derivation of the elastic similarity
(i) a shift to a more upright locomotor limb posture and (ii) anscaling, however, is not consistent with the experimental
allometric increase in the moment arm of antigravity musclebservation that maximum stresses in mammalian long bones
Those artifices decrease joint moments relative to thare body-mass-independent (Biewener, 1989, 1990, 1991),
magnitude of ground forces, thus reducing mass-specific forcegce the beam described above will be submitted to stresses
acting on bones. It has also been realized that large mammaisportional toL12, if &/L is kept constant. As Currey (2002)
do not possess the same locomotor agility of smaller onestates,McMahon's basic idea was that organisms are designed
which is probably associated with reduced bone loading argb that the deflections they undergo are what is controlled, not
the maintenance of similar safety factors (Biewener, 1991the stresses they béaBince this derivation of the ESM is not
Christiansen, 1999a,b). in agreement with experiment, the hypothesis that remains to

Nevertheless, buckling can suddenly occur even if stredse tested is the possibility of Euler buckling.
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Currey (2002) investigated this possibility. His analysisdiameter dinne=KD, where 0¥<1, A=(1-K?)mD?%4 and
indicates that certain long bones are liable to buckling if highly=(1-K#%mD464 (Gere and Timoshenko, 2000).
loaded in compression. However, Currey considered solely A different failure mechanism that must also be avoided is
axial compression, not taking into account that mammaliathe elastic instability known as Euler buckling. This occurs
long bones are subject to a high degree of bending (Bieweneavhen the axial force applied to a pillar overcomes a certain
1991; Rubin and Lanyon, 1982, 1984). As mentioned abovéhreshold. For a biarticulated beam, this threshold is given by
we show that, under axial compression plus bendinghe Euler estimate (Gere and Timoshenko, 2000)
mammalian long bones are not slender enough to be vulnerahle
to Euler buckling. @

: 4)
It is important to observe that, besides Euler buckling, ¢ L2

cylindrical beam, such as a long bone, may also fail due to loc@hereE is the elasticity modulus of the material. In Results

buckling. This is characterized by deformation of a small parénd Discussion, we perform some calculations in order to
rather than the deformation of the whole structure, which iaetermine which of these failure modes is relevant to |0ng_

what happens in Euler buckling. It occurs when the walls argone allometry.
so thin relative to the diameter that the shape of the structure
does not support the wall sufficiently to prevent it from
bending in an easy direction (see Currey, 2002). Currey and The model
Alexander (1985) investigated the possibility that mammalian Our argument begins along the lines proposed by McMahon
and avian long bones failed in local buckling. They found tha{1973, 1975a), namely: (a) a long bone can be described as a
the ratioR/t of midradius of the wallR) to thicknesst] in  cylinder of lengthL and diameteD; (b) long-bone allometry is
mammalian long bones is on average 2.0, which is far belodetermined by the elastic forces the bone must bear; (c)
the thresholdR/t=14) above which long bones would be liable mechanical properties such as elasticity modiéyarid tension-
to local buckling. and compression-yield stresseSeds yield and Ocomp yield are
The balance of this paper is organized as follows. In the nekody-mass-independent. Rather than focusing solely on elastic
section we provide the mathematical expressions which will b@stability (buckling), our model is based on the further
used in our stress analysis. The hypotheses of our model drgpotheses: (d) although the loading pattern of a long bone is
then presented (The model). In Results and Discussion, v@@mplex, there are only two modes relevant to mammalian long-
explore the consequences of those hypotheses and compareleire allometry: compression stressand bending stressp,
predictions with reported experimental values. Finally, wecaused, respectively, by an axial foFeg and a transverse force
draw our conclusions in the last section. Ft (see Figl); (e) maximum tensile and compressive streisses
vivo, which normally occur in bone’s midshaft during locomotion
at top velocity, jumping, acceleration and other strenuous
Theory activities, maintain a safety factd) to yield stresses that are
In the project of a structure, engineers must know th&ody-mass-independent. Euler buckling is avoided by the same
physical properties of the constituent materials and the forcggfety factor; (f) the ratiokK=dinne/D is also body-mass-
which each part will endure. This enables the calculation of thigdependent.
dimensions necessary to resist the applied strebsesvo Our hypotheses are all supported by experimental data.
stresses in bone cannot exceed yield stresses, since this leAgsumption (c) agrees with measurements suggesting that
to irreversible deformations. Indeed, several investigatorgone material properties are size-independent (Biewener,
(Biewener, 1989, 1990, 1991; Lanyon et al., 1979; Biewenet982, 1991). Hypothesis (d) is supported by vivo
and Taylor, 1986) have shown that maximum stresseivo ~ Mmeasurements, which show that, in most cases, bending is the

Fbuckling:

maintain a safety factor to yield of about three to four. main loading mode of long bones and that the principal stresses
The compressive stregsacting on a beam under pure axial are almost parallel to the bone longitudinal axis (Biewener,
compression is: 1991; Rubin and Lanyon, 1982, 1984). Assumption (e) is
Fa corroborated by the experimental observation that maximum

, (2) tensile and compressive stresses measinedvivo are

A approximately 1/3 the bone tensile- and compressive-yield

whereA is the cross-sectional area dfg is the axial force. stresses and occur in the midshaft (Biewener, 1989, 1990,

On the other hand, a transverse fofggroduces a bending 1991; Lanyon et al., 1979; Biewener and Taylor, 1986).

stressop given by: Hypothesis (f) is confirmed in various experimental reports.

Fery Currey and Alexander (1985) have made a large compilation

Oc= ——, ©) of values oK for mammals. Analysing these data, we find that

' K does not correlate with body mass and that its average value

wherer is the moment arm of the forcgis the distance from is 0.57+0.08. Moreover, K is a constant, we expect to find

the neutral plane of bending to the specified pointlaadhe  AxD?2 and l«A2xD*. Indeed, using the data of Selker and

second moment of area. For a hollow cylinder of inneiCarter (1989), we find thatxD-98 and1=A1-98 In addition,
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Biewener (1982) reports thiet A1-99 (These scaling relations TR L
for A and | were calculated by least squares regression. | N
reduced major axis (rma) analysis were used, no significa e,

differences would have arisen since the correlation coefficien
were always above 0.98.)

Results and Discussion
Euler buckling vs. yield stresses: which is the failure Bg Fax {A L
mechanism of mammalian long bones?
We consider a cylindrical beam loaded as in EigThe
beam can fail in two different ways: it will be permanently
deformed as soon as yield stresses are reached, and, if the berig. 1. Bone is described as cylinder loaded

is gracile enough, it will buckle before the yield limit. The with an axial force Fax and a bending  “——— -
critical ratio (/D)cr separating these failure regimes can bemomentr<Fi acting on its midshaft. For an S A
estimated as follows. Adopting the convention that tensile€xplanation of points A and B, see text. T

stresses are positive and compressive stresses negative,
total stress at point A (Fid) is given byoa=—0c—0n, Where

Oc is given in Equatio2 and opxFLD/l as given in Fbuckiing TEEI
Equation3. Similarly, the total stress at point Bag=—0c+0bp. Firading= s sz 9)
We consider here only the maximum values of the stresse S
developed in_long bone;, so that our assumption (e) implies We define the dimensionless paramétes:
that, at maximum loadingga=0comp yieldS and 0g=0tens
yield/S. Defining C=0Otens yieldCcomp yield |t fO||0WS (nOte that Fg;rgax)
Ocomp yieldandc are negative with these definitions) that: f= W , (20)
- (5) uckling
i.e. the ratio of the axial component of force when yield stress
_1-c are reached to the axial force that causes buckling<Romwe
Ob= 1+c Oc ®)  have Fad<Fhucking SO that yield stresses are reached before
buckling occurs and bone fails due to undesirable permanent
and S 20¢ :_ﬂ' % deformations. On the other handfL, bone buckles before
1+c 1-c the yield limit. Thereford=1 is the boundary that separates

Using the  experimental value c=(128+11MPa)/ these tV\_'O failure regimes. : :
(-180+13MPa)=-0.71+0.11 (Currey 2002) this We will now determine if mammalian long bones are in the

regionf<l1, where yield stress is the primary concern, or in the
intervalf>1, for which buckling is the real threat. Substituting
Equations8 and 9 in 10, we find:

result implies that the bending componewt)( accounts
for approximately (%c)/2=86+t6% of the maximum
compressive stressof) on the bone. To show this, note
that pn/oa|=(1-)/2=0.8550.055, while d¢/oa|=(1+c)/2= 1(1+0) maL20

0.145:0.055. This prediction is in excellent agreement with f=— ~—— |Ocomp yield C—— L. (12)
rosette strain gauge data for tibia, which show tbat 2 wE ol o
represents 84.4% of the total stress in dogs and 83.5% in hor experimental values of the above parameters are

during locomotion (Rubin and Lanyon, 1982), and with theg_5>5,5Gpa OcompyielF—180+13MPa,  ¢=-0.71+0.11
values for buffalo (81%) and elephant (89%) obtained througfcrrey, 2002). Thus we find that Euler buckling is avoided

analyses of films of galloping animals (Alexander et al.p qyided thatl/AL2>1.2x104. Unfortunately experimental
1979a). ) ) max - o reports are usually limited to bone lendgttand diameteD,
Thﬁ maximum  axial forceFz™ is f%‘;g_d substituting 504 seldom provide cross-sectional akeand second moment
oc=Fg A in Equation7, which provided=5=(14€)[0alN2. o 5req). Exceptionally, Selker and Carter (1989) Astl and
Since oa=0comp yieldS, the maximum axial force acting in | o 40 Jong bones of 12 species of artiodactyls. In their data,
bone is given by: there is no bone in the buckling regime, and the minimum
(Geomp yield value ofl/AL? is 3.3«10™, which is 2.75 times larger than the
—_—. (8) boundary value. It is worth noting that Biewener (1982) also
S reports direct measurements/fandl. Nevertheless, sinde
In hypothesis (e), we assume that damage due to bucklingig not given in this study, Equatidi could not be used to
prevented by the same safety factor. Thus, the maximum axidétermine if those bones are liable to Euler buckling.
force acceptable is: We have seen in the Theory section that, for a hollow

1
Fna)= 5 (1+0A
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cylinder of inner diametetinne=KD, we haveA=(1-K?)mD?/4  have that the maximum bending stresg®) in bone is
and|=(1-K4TD4/64. Substituting these values in Equatidn  of"™)=(1-c)Gcomp yield2S, which is body-mass-independent.

we find that the ‘criticalL/D ratio is: Consequentlyr{M)x|/DLcM3d-1 and, sinceF{M™Ma, we
’ have our second scaling relation, which dsi3a;.. Therefore
oo 01 T°E 0y h l fi ile b :
0 =0 (1+K)T, (12)  the scaling exponents for non-gracile bones are:
(D kr B(1+C) [Ocomp yield g a 38
X
which corresponds ti-1. Substituting the experimental result dzE and I= o Ta (14)

K=0.57+0.08 and the mechanical properties of bone related in

: : In order to estimatd andl, we use the experimental values
the previous paragraph, we find that

of ax andat. Although McMahon assumed thaduckiing=Fax<M
(L/D)er=26+8. (13) (ax=1) (McMahon, 1973, 1975a), the loading situation of a long
ePone is not so simple. The usual procedure (Alexander, 1974;

.We can now understan_d why the elastic similarity mod Alexander et al., 1979a; Biewener, 1983b) to evaluate the forces
fails to explain the experimental data. We have analyzed a

large amount of data available in the literature (Alexander e&fcct)lr?]%r?tr; 222225%”%?;?5?%? re()e(;c;]rglngosulr? dtcr)ezclltjiitr? the
al., 1979b; Biewener, 1983a; Bertram and Biewener, 1992: y scl 9

Christiansen, 1999b) and found that long bones seldom hay@ ce Eground: Fmuscié=Fgroun?, where r and R are the

. L moment arms defined in Fig. The forces exerted in a bone

L/D>26. Femura, humerii and tibiae are never more slend%ram then be written F £OSEm)+F £osfig) and
thanL/D=26. Only two of a total of 117 radii are more slender_"_ i &eo=Fmuscl m) 7T groun 9

Ft=—Fmusci&in(@m)*+ Fgroun®in(@g), where am and og are

than (/D)er- On the other hand, ulnae and fibulae are found toteasured with respect to the bone longitudinal axis. Since
exceed this limit often (27 in a group of 68 ulnae examined. . :
and 35 fibulae in a total of 47 exceedetD=26). This muscle forces are almost parallel to the bone axis<(0°)

L o | andFmuscie>Fground0sQlg), because cosg)<1 and, in general,
however, does not necessarily imply that Euler bucklmg}<R We ASSUME o E andEcE sin(g)
determines the allometry of those bones; it probably simply " | scaling 0;:)(; in;uiictlaetermir:ed girrc;urt]hree %ii'fferent ways.

gﬁgﬁa;r;?; rigg;c;ag—bearmg condition i some an'mal?:irst, it appears that maximum muscle stress is approximately

. ' " Lo {'ndependent of body mass (Schmidt-Nielsen, 1990), which

It is _|mpo_rtant to note that the uncertainty n the value Ongplies that muscle force is proportional to muscle area, so
(L/D)¢ris quite large as a consequence of the variation observ?hat Frusce“AmucaiecMa. We have collected and calculated

experimentally in the physicaE( o ieldando ielg and .
perimentally pny (Ttens yield comp yield __averages of muscle-area allometric exponents from several
geometrical K) properties of bone. Nevertheless, the discussion

o . : sources. The results are as folloves:0.77 for antelopes
above is still correct even if we choose the smallest esumatef,&lexander 1077),a=0.83 for insectivores and rodents
(L/D)cr, namely, (/D)c=18. ’ e

(Castiella and Casinos, 199@)0.78 for rodents (Druzinsky,

Determining the scaling exponents d and |

Let us derive the allometric exponemtsand| defined in
Equationl. As shown in Figl, we describe the resultant force
acting on half-bone by two components, namely an axia
componentFax and a transverse compondnt There is no
a priori reason to assume that, at maximum loading, the
componentsF3&* and F{"® are proportional to each other.
Therefore, we consider that each component scales with i
own allometric exponent, i.E5cM& andF{"®xMa. Below,
we show that generallk#a;. The exponentax andas will be
deduced from experimental data on the scaling of muscle forc
ground reaction force and direct measurements of the force
acting on a long bone.

We now show how the scale-invariance of bone mechanic:
properties, safety factor and ratio lead to the power-law
dependence of bone dimensions on body mass (Equdation
For f<1, the bone fails when the maximum stresses reach tf
yield limit. Since yield stresses and safety factors are body
mass-independent [assumptions (c) and (e)], equ@tion
implies that FI@*x<A. SubstitutingA=D2«M?2d, we find the R
scaling relation @=ax [here we have used assumption (f)].  Fig.2. A simplified loading situatiorR is the moment arm of the

Equation3 implies that the maximum transverse forceground force Eground, whiler is the moment arm of the muscle force
acting on a bone i5{M™xo{M™}/DL. From Equatio:¥ we  (Fmuscd. Figure modified from Biewener (1989).

quscle
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Tablel. Bone length and diameter scaling exponémtsdd for the main long-bones

Scaling exponents

Bone list/lrma dis/drma 2d 3 r rd

All mammals
Femur 0.301/0.309 0.355/0.360 0.710/0.720 0.764/0.771 0.976 0.986
Tibia 0.257/0.277 0.360/0.365 0.720/0.730 0.823/0.818 0.929 0.985
Fibula 0.225/0.243 0.338/0.368 0.676/0.736 0.789/0.861 0.926 0.918
Humerus 0.300/0.311 0.382/0.386 0.764/0.772 0.846/0.847 0.964 0.989
Radius 0.300/0.321 0.387/0.401 0.774/0.802 0.861/0.882 0.933 0.964
Ulna 0.302/0.318 0.355/0.458 0.710/0.916 0.763/1.056 0.949 0.776
Average 1 0.281/0.297 0.363/0.390 0.726/0.779 0.808/0.873 -
Average 2 0.290/0.305 0.371/0.378 0.742/0.756 0.824/0.830 -

Non-gracile mammals only
Fibula 0.235/0.241 0.279/0.286 0.558/0.572 0.602/0.617 0.979 0.978
Ulna 0.288/0.298 0.376/0.383 0.752/0.766 0.840/0.851 0.966 0.980

Average 1, mean for all the 6 bones; average 2, mean for femur, tibia, humerus and radius.

Below are the values of the exponents for non-grakcile<{26) ulnae and fibulae.

The data were taken from Christiansen (1999b).

The exponents are given for both methods: least square regression (Isr) and reduced major axisafithej.are the correlation
coefficients. For further explanation, see text.

1993) anda=0.80 and 0.81 for mammals as a wholecorrelation coefficients are much higher when we consider
(Alexander et al., 1981; Pollock and Shadwick, 1994). We notenly non-gracile ulnae and fibulae.
that mammals of very different body masses, such as rodentsin contrast to the assumption of McMahon (1973, 1975a)
and antelopes, exhibit similar behavior, with muscle arethat bone mass is proportional to body maB2L¢&M),
scaling on average 84%-80(individual muscle exponents range Christiansen (2002) has recently shown that bone mass scales
from 0.65 to 0.92). Second, measuring the effective mechanicaiith slight positive allometry (on average, bone mass scales as
advantage (EMAHR>=M?9-29 and using his previous result that M1-06 using the rma method). Indeed, the assumiéir=M
Fground<M in small mammals, Biewener (1989) reported thatogether with our resuli=0.37 leads to a poor prediction of
FmusclecM0-74 and predicted maximum muscle stress to scal¢he bone length exponent=Q.26) in comparison to the
asM=0-06 g prediction that has yet to be confirmed. (Note thagxperimental valuel£0.30) (Tablel). Therefore the positive
this result is consistent with the scaling of muscle force andcaling of long-bone mass, although weak, cannot be ignored.
area mentioned above). Third, the only direct estimata of This point has already been noted by Hokkanen (1986).
that we are aware of was given by Rubin and Lanyon (1984) Here we make a digression regarding the pioneering work
and, although based in a small sample (5 species), provide®f Prange and collaborators (1979) on the scaling of
value @x=0.69) consistent with the scaling of muscle forcemammalian skeletal mas®/dkelets). Since their work was
These results allow us to predict: published, it has been widely cited as evidence that mammalian
d=0.37 (15) skeletal mass scales with positive allometry (for instance, see
B Schmidt-Nielsen, 1984). Their data, however, is not entirely
sinceax=0.74. This is in good agreement with experimentalconclusive. Among the 49 mammals used in the study, only
values, as shown in Tablésand 2. Notice that even if we the elephant has a body mass abovkg/Ooreover, it seems
choose the highestaf=0.80) or the lowest &=0.69) that man and dog have skeletal masses above the values
estimates for the allometric exponent of axial force, theexpected for their body masses. Fitting their data for the 44
predicted value fod, namely 0.62d<0.80, is still in the mammals with masses less thankg2using the least-square
experimental range. regression method, we finWMskeletaF0.06IM1-92 r=0.993.

The experimental exponents presented in Tablere taken (Note that rma analysis would not change this result
or calculated from Christiansen (1999b). We chose these dagppreciably due to the high correlation coefficient.) In
for two reasons: (i) they represent the most extensive samplkegreement with this result, Bou and Casinos (1985) found that
and (ii) animals with similar locomotor modes are includedMskeletaF0.0422%41-0143 r=0,993, in insectivores and rodents.
(Note that Christiansen’s data has an inconvenience, nameljherefore, experimental data indicates that skeletal mass is
animals of mass <kg are not included.) The agreement of proportional to body mass for mammals smaller thakgl 2t
the predicted value ofl with the experimental exponents is necessary to collect more data in the gap betwedwm 67
reinforces that long-bone allometry is governed by the neefinan) and 6608g (elephant) in order to obtain a more reliable
to resist compressive and bending stresses. Notice that thquation for the whole group of mammals. Finally, we note
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Table2. Experimental values dfandd for non-gracile long boned.(D<26) using data obtained from various sources

Alexander Bertram and Biewener Christiansen
Bone lisr/lrma dist/drma lis/lrma disr/drma lis/lrma disr/drma
Small mammalshN<50kg)
Femur 0.398/0.404 0.369/0.371 0.372/0.384 0.380/0.392 0.327/0.342 0.344/0.362
Tibia 0.344/0.350 0.379/0.383 0.362/0.376 0.388/0.403 0.343/0.364 0.373/0.387
Humerus 0.393/0.399 0.382/0.384 0.382/0.395 0.391/0.405 0.321/0.351 0.386/0.401
Radius - - 0.397/0.419 0.394/0.414 0.364/0.407 0.453/0.481
Ulna 0.383/0.389 - - - 0.288/0.336 0.371/0.406
Average 2 0.378/0.384 0.377/0.379 0.378/0.394 0.388/0.404 0.339/0.366 0.389/0.408
Large mammals\>50kg)
Femur 0.325/0.385 0.315/0.329 0.284/0.326 0.308/0.344 0.280/0.310 0.354/0.367
Tibia 0.198/0.248 0.304/0.334 0.142/0.207 0.315/0.358 0.203/0.279 0.338/0.356
Humerus 0.323/0.371 0.365/0.381 0.286/0.327 0.320/0.358 0.288/0.323 0.359/0.370
Radius - - 0.225/0.297 0.430/0.473 0.275/0.346 0.311/0.362
Ulna 0.282/0.319 - - - 0.255/0.290 0.405/0.431
Average 2 0.282/0.335 0.328/0.348 0.234/0.289 0.343/0.383 0.262/0.311 0.341/0.364

Data was taken from Alexander et al. (1979b), Biewener (1983a), Bertram and Biewener (1992) and Christiansen (1999a,b).
Mammals are considered small or large relatieltb0kg, as proposed by Christiansen (1999b).
Average 2 is the mean defined in Table

that different bones scale with different allometric exponentsnto account (Christiansen, 1999a,b; Sokal, 1981). Reanalysing
While long-bone masses scale with significant positiveAlexander’s data using rma, we obtain the exponehits4 and
allometry (Bou and Casinos, 1985; Christiansen, 2002), the0.18, for fore and hind feet, respectively. Since there is no
masses of other bones, such as the skull, scale with significaagparent posture change in large mammals (Biewener, 1989,
negative allometry (Bou and Casinos, 1985). 1990), we assume that the anglgis constant; thea=0.84

It was relatively easy to estimat. By contrast, the for these animals. This estimate implies th8d-a;=0.27 in
exponent is more difficult to evaluate because it depends otarge mammals, in reasonable agreement with the experimental
the scaling of ground reaction ford&found and experimental data (see Tabl2). On the other hand, small mammals change
reports for this are scarce. As stated above (The modeppsture from a crouched to a more upright position (Biewener,
maximum stresses may occur in different activities, such as989, 1990), and consequently the armgediminishes with
galloping at top speed, jumping and acceleration. Here wiacreasing body massigxM-097in small mammals at the
evaluate the exponemt only during top speed locomotion, trot—gallop transition speed; Biewener, 1983a). As already
since we did not find any experimental data for the scaling ahentioned, Biewener reported thHafound<M1-Cin this group
Fgroundin jumping nor in accelerating. Nevertheless, this doesit top galloping speed. Thus, considering thpscales at top
not seem to be a shortcoming, since maximum tensile stressesocity in the same manner as at the trot—gallop transition
during top speed locomotion maintain the same safety fact@peed, one predicts that0.93 in small mammals. This result,
to yield that are kept by compressive stresses (Biewener, 198®wever, does not agree with the experimental data. The
1990, 1991; Lanyon et al., 1979; Biewener and Taylor, 1986}kalculation ofa; for small mammals needs further study, as
This means that, although the magnitude of ground reactiatiscussed below.
forces may be larger during acceleration or jumping in Selker and Carter (1989) found tlagt3d—-=0.80 using their
comparison to top speed locomotion, the allometric exponemtata for bone dimensions of artiodactyla, and Biewener’s of
a is probably the same for these three vigorous activities. mammals. Knowing that muscle force scales approximately as

Large ground reaction forces occur during top speed19-80 they concluded that the transverse component of force is
locomotion and are known to scaleNd$3, wheref3 is the duty  proportional to muscle forceF{<Fmuscid. However, this
factor (fraction of the stride during which a foot touches theconclusion is in contrast with the widely accepted analysis
ground). Alexander et al. (1977) reported that in ungulategAlexander, 1974; Alexander et al., 1979a; Biewener, 1983b)
BcM0-11 (rg=0.79) for the fore feet anflxM=0-14(rpg=0.78)  of the loading situation in legs, which led us to the conclusion
for the hind feet. When analyzing allometric data, the leastthat the transverse component of forEg (s proportional to
square regression (Isr) method is not expected to be the magbund reaction force, not muscle force. Moreover, if we accept
appropriate, since it assumes that error is present only in thgxFmuscle We would conclude thaty=a; and sol=d=0.37.
dependent variable. Reduced major axis (rma) analysis is to Béthough this is a reasonable result for small mammals (see
preferred because it takes the uncertainties of both variabl&sble2), large mammals do not follow this relation. In order to



Scaling of mammalian long bond$83

solve this puzzle, more data are needed on the scaling afiencies CNPqg (Conselho Nacional de Desenvolvimento
maximum muscle stress, bone mechanical properties and duyentifico e tecnolégico) and Fapemig (Fundacao de Amparo
factor to confirm if they are mass-independent or if they exhibid Pesquisa do Estado de Minas Gerais).
a small, but relevant, variation with size. It is also very
important to measura: experimentally, as Rubin and Lanyon
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