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Mammalian long-bone allometry is commonly discussed in
terms of the allometric exponents d and l that relate bone
diameter D and length L to body mass M via the power laws:

D ~ Md and L ~ Ml·, (1)

where M varies over 6 orders of magnitude. McMahon’s
proposal, known as the ‘elastic similarity model’ (ESM), that
Euler buckling is the constraint determining the scaling of
long-bone geometry, as well as other structural and
physiological variables (McMahon, 1973, 1975a), has set
the direction of much subsequent work. Although some
experimental support was found in ungulates and antelopes
(McMahon, 1975b; Alexander, 1977), the predicted exponents
are not in agreement with larger data sets embracing a broader
range of masses (Alexander et al., 1979b; Biewener, 1983a;
Christiansen, 1999a,b; Polk et al., 2000). While the limitation
of the elastic similarity model is well documented (Alexander
et al., 1979b; Biewener, 1983a; Economos, 1983; Castiella
and Casinos, 1990; Christiansen, 1999a,b; Currey, 2002), the
physical grounds for this remain unknown. 

Mammals adopt several strategies to avoid the mechanical
consequences of large size. Biewener (1989, 1990, 1991) has
shown that large mammals keep bone stress constant through
(i) a shift to a more upright locomotor limb posture and (ii) an
allometric increase in the moment arm of antigravity muscles.
Those artifices decrease joint moments relative to the
magnitude of ground forces, thus reducing mass-specific forces
acting on bones. It has also been realized that large mammals
do not possess the same locomotor agility of smaller ones,
which is probably associated with reduced bone loading and
the maintenance of similar safety factors (Biewener, 1991;
Christiansen, 1999a,b).

Nevertheless, buckling can suddenly occur even if stress

levels are kept at a safe margin. Euler buckling is an elastic
instability that occurs when the axial force acting in a rod
overcomes a certain threshold. In this paper we show that
mammalian long bones are not slender enough to buckle, and
that long-bone allometry is governed by the need to resist
bending and compressive stresses. We propose a model, based
on the requirement to maintain safety factors to yield, which
predicts scaling exponents in agreement with data and
elucidates various aspects of long-bone allometry, such as
differential allometry. Our work, in addition to papers by West
et al. (1997, 1999), shows that allometric laws in biology can
be understood on the basis of the interplay between geometric
and physical constraints.

Note that, although the ESM was formalized in terms of end-
loaded columns that may fail in Euler buckling, McMahon
(1975a) derived the same scaling relations for a beam subject
to pure bending. He considered a rod supported on its
extremities and subject to bending by a force proportional to its
weight, and showed that if different-sized columns maintain
L~D2/3, the deflection at the center δ divided by the length L is
kept constant (McMahon, 1975a). In this sense, the ESM holds
that elastic deflections of long bones are self similar across
different sizes. This second derivation of the elastic similarity
scaling, however, is not consistent with the experimental
observation that maximum stresses in mammalian long bones
are body-mass-independent (Biewener, 1989, 1990, 1991),
since the beam described above will be submitted to stresses
proportional to L1/2, if δ/L is kept constant. As Currey (2002)
states, ‘McMahon’s basic idea was that organisms are designed
so that the deflections they undergo are what is controlled, not
the stresses they bear’. Since this derivation of the ESM is not
in agreement with experiment, the hypothesis that remains to
be tested is the possibility of Euler buckling.
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Although there is much data available on mammalian
long-bone allometry, a theory explaining these data is still
lacking. We show that bending and axial compression are
the relevant loading modes and elucidate why the elastic
similarity model failed to explain the experimental data.
Our analysis provides scaling relations connecting bone
diameter and length to the axial and transverse

components of the force, in good agreement with
experimental data. The model also accounts for other
important features of long-bone allometry.
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Currey (2002) investigated this possibility. His analysis
indicates that certain long bones are liable to buckling if highly
loaded in compression. However, Currey considered solely
axial compression, not taking into account that mammalian
long bones are subject to a high degree of bending (Biewener,
1991; Rubin and Lanyon, 1982, 1984). As mentioned above,
we show that, under axial compression plus bending,
mammalian long bones are not slender enough to be vulnerable
to Euler buckling.

It is important to observe that, besides Euler buckling, a
cylindrical beam, such as a long bone, may also fail due to local
buckling. This is characterized by deformation of a small part
rather than the deformation of the whole structure, which is
what happens in Euler buckling. It occurs when the walls are
so thin relative to the diameter that the shape of the structure
does not support the wall sufficiently to prevent it from
bending in an easy direction (see Currey, 2002). Currey and
Alexander (1985) investigated the possibility that mammalian
and avian long bones failed in local buckling. They found that
the ratio R/t of midradius of the wall (R) to thickness (t) in
mammalian long bones is on average 2.0, which is far below
the threshold (R/t=14) above which long bones would be liable
to local buckling.

The balance of this paper is organized as follows. In the next
section we provide the mathematical expressions which will be
used in our stress analysis. The hypotheses of our model are
then presented (The model). In Results and Discussion, we
explore the consequences of those hypotheses and compare our
predictions with reported experimental values. Finally, we
draw our conclusions in the last section.

Theory
In the project of a structure, engineers must know the

physical properties of the constituent materials and the forces
which each part will endure. This enables the calculation of the
dimensions necessary to resist the applied stresses. In vivo
stresses in bone cannot exceed yield stresses, since this leads
to irreversible deformations. Indeed, several investigators
(Biewener, 1989, 1990, 1991; Lanyon et al., 1979; Biewener
and Taylor, 1986) have shown that maximum stresses in vivo
maintain a safety factor to yield of about three to four.

The compressive stress σc acting on a beam under pure axial
compression is:

where A is the cross-sectional area and Fax is the axial force.
On the other hand, a transverse force Ft produces a bending
stress σb given by:

where r is the moment arm of the force, y is the distance from
the neutral plane of bending to the specified point and I is the
second moment of area. For a hollow cylinder of inner

diameter dinner=KD, where 0<K<1, A=(1–K2)πD2/4 and
I=(1–K4)πD4/64 (Gere and Timoshenko, 2000).

A different failure mechanism that must also be avoided is
the elastic instability known as Euler buckling. This occurs
when the axial force applied to a pillar overcomes a certain
threshold. For a biarticulated beam, this threshold is given by
the Euler estimate (Gere and Timoshenko, 2000)

where E is the elasticity modulus of the material. In Results
and Discussion, we perform some calculations in order to
determine which of these failure modes is relevant to long-
bone allometry.

The model
Our argument begins along the lines proposed by McMahon

(1973, 1975a), namely: (a) a long bone can be described as a
cylinder of length L and diameter D; (b) long-bone allometry is
determined by the elastic forces the bone must bear; (c)
mechanical properties such as elasticity modulus (E) and tension-
and compression-yield stresses (σtens yield and σcomp yield) are
body-mass-independent. Rather than focusing solely on elastic
instability (buckling), our model is based on the further
hypotheses: (d) although the loading pattern of a long bone is
complex, there are only two modes relevant to mammalian long-
bone allometry: compression stress σc and bending stress σb,
caused, respectively, by an axial force Fax and a transverse force
Ft (see Fig.·1); (e) maximum tensile and compressive stresses in
vivo, which normally occur in bone’s midshaft during locomotion
at top velocity, jumping, acceleration and other strenuous
activities, maintain a safety factor (Sf) to yield stresses that are
body-mass-independent. Euler buckling is avoided by the same
safety factor; (f) the ratio K=dinner/D is also body-mass-
independent.

Our hypotheses are all supported by experimental data.
Assumption (c) agrees with measurements suggesting that
bone material properties are size-independent (Biewener,
1982, 1991). Hypothesis (d) is supported by in vivo
measurements, which show that, in most cases, bending is the
main loading mode of long bones and that the principal stresses
are almost parallel to the bone longitudinal axis (Biewener,
1991; Rubin and Lanyon, 1982, 1984). Assumption (e) is
corroborated by the experimental observation that maximum
tensile and compressive stresses measured in vivo are
approximately 1/3 the bone tensile- and compressive-yield
stresses and occur in the midshaft (Biewener, 1989, 1990,
1991; Lanyon et al., 1979; Biewener and Taylor, 1986).
Hypothesis (f) is confirmed in various experimental reports.
Currey and Alexander (1985) have made a large compilation
of values of K for mammals. Analysing these data, we find that
K does not correlate with body mass and that its average value
is 0.57±0.08. Moreover, if K is a constant, we expect to find
A~D2 and I~A2~D4. Indeed, using the data of Selker and
Carter (1989), we find that A~D1.98 and I~A1.98. In addition,

(4)Fbuckling=
π2EI

L2
,

(3)σc=
Ft ry

I
,

(2),σc=
Fax

A
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Biewener (1982) reports that I~A1.99. (These scaling relations
for A and I were calculated by least squares regression. If
reduced major axis (rma) analysis were used, no significant
differences would have arisen since the correlation coefficients
were always above 0.98.)

Results and Discussion
Euler buckling vs. yield stresses: which is the failure

mechanism of mammalian long bones?

We consider a cylindrical beam loaded as in Fig.·1. The
beam can fail in two different ways: it will be permanently
deformed as soon as yield stresses are reached, and, if the beam
is gracile enough, it will buckle before the yield limit. The
critical ratio (L/D)cr separating these failure regimes can be
estimated as follows. Adopting the convention that tensile
stresses are positive and compressive stresses negative, the
total stress at point A (Fig.·1) is given by σA=–σc–σb, where
σc is given in Equation·2 and σb~FtLD/I as given in
Equation·3. Similarly, the total stress at point B is σB=–σc+σb.
We consider here only the maximum values of the stresses
developed in long bones, so that our assumption (e) implies
that, at maximum loading, σA=σcomp yield/Sf and σB=σtens

yield/Sf. Defining c=σtens yield/σcomp yield, it follows (note that
σcomp yieldand c are negative with these definitions) that:

σB =cσA·, (5)

Using the experimental value c=(128±11·MPa)/
(−180±13·MPa)=−0.71±0.11 (Currey, 2002), this
result implies that the bending component (σb) accounts
for approximately (1−c)/2=86±6% of the maximum
compressive stress (σA) on the bone. To show this, note
that |σb/σA|=(1–c)/2=0.855±0.055, while |σc/σA|=(1+c)/2=
0.145±0.055. This prediction is in excellent agreement with
rosette strain gauge data for tibia, which show that σb

represents 84.4% of the total stress in dogs and 83.5% in horses
during locomotion (Rubin and Lanyon, 1982), and with the
values for buffalo (81%) and elephant (89%) obtained through
analyses of films of galloping animals (Alexander et al.,
1979a).

The maximum axial force Fax
max is found substituting

σc=Fax
max/A in Equation·7, which provides Fax

max=(1+c)|σA|A/2.
Since σA=σcomp yield/Sf, the maximum axial force acting in
bone is given by:

In hypothesis (e), we assume that damage due to buckling is
prevented by the same safety factor. Thus, the maximum axial
force acceptable is:

We define the dimensionless parameter f as:

i.e. the ratio of the axial component of force when yield stress
are reached to the axial force that causes buckling. For f<1, we
have Fax

max<Fmax
buckling, so that yield stresses are reached before

buckling occurs and bone fails due to undesirable permanent
deformations. On the other hand, if f>1, bone buckles before
the yield limit. Therefore f=1 is the boundary that separates
these two failure regimes. 

We will now determine if mammalian long bones are in the
region f<1, where yield stress is the primary concern, or in the
interval f>1, for which buckling is the real threat. Substituting
Equations·8 and 9 in 10, we find:

The experimental values of the above parameters are
E=22±5·GPa, σcomp yield=–180±13·MPa, c=−0.71±0.11
(Currey, 2002). Thus we find that Euler buckling is avoided
provided that I/AL2>1.2×10–4. Unfortunately experimental
reports are usually limited to bone length L and diameter D,
and seldom provide cross-sectional area A and second moment
of area I. Exceptionally, Selker and Carter (1989) list A, I and
L for 40 long bones of 12 species of artiodactyls. In their data,
there is no bone in the buckling regime, and the minimum
value of I/AL2 is 3.3×10−4, which is 2.75 times larger than the
boundary value. It is worth noting that Biewener (1982) also
reports direct measurements of A and I. Nevertheless, since L
is not given in this study, Equation·11 could not be used to
determine if those bones are liable to Euler buckling.

We have seen in the Theory section that, for a hollow

(11)f = .
1

2
Zσcomp yieldZ

(1+c)

π2E


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
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Fig.·1. Bone is described as cylinder loaded
with an axial force Fax and a bending
moment τ~FtL acting on its midshaft. For an
explanation of points A and B, see text.
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cylinder of inner diameter dinner=KD, we have A=(1–K2)πD2/4
and I=(1–K4)πD4/64. Substituting these values in Equation·11,
we find that the ‘critical’ L/D ratio is:

which corresponds to f=1. Substituting the experimental result
K=0.57±0.08 and the mechanical properties of bone related in
the previous paragraph, we find that

(L/D)cr= 26 ± 8·. (13)

We can now understand why the elastic similarity model
fails to explain the experimental data. We have analyzed a
large amount of data available in the literature (Alexander et
al., 1979b; Biewener, 1983a; Bertram and Biewener, 1992;
Christiansen, 1999b) and found that long bones seldom have
L/D>26. Femura, humerii and tibiae are never more slender
than L/D=26. Only two of a total of 117 radii are more slender
than (L/D)cr. On the other hand, ulnae and fibulae are found to
exceed this limit often (27 in a group of 68 ulnae examined,
and 35 fibulae in a total of 47 exceeded L/D=26). This,
however, does not necessarily imply that Euler buckling
determines the allometry of those bones; it probably simply
reflects their non-load-bearing condition in some animals
(Christiansen, 1999a,b).

It is important to note that the uncertainty in the value of
(L/D)cr is quite large as a consequence of the variation observed
experimentally in the physical (E, σtens yieldand σcomp yield) and
geometrical (K) properties of bone. Nevertheless, the discussion
above is still correct even if we choose the smallest estimate for
(L/D)cr, namely, (L/D)cr=18.

Determining the scaling exponents d and l

Let us derive the allometric exponents d and l defined in
Equation·1. As shown in Fig.·1, we describe the resultant force
acting on half-bone by two components, namely an axial
component Fax and a transverse component Ft. There is no
a priori reason to assume that, at maximum loading, the
components Fax

max and Ft
max are proportional to each other.

Therefore, we consider that each component scales with its
own allometric exponent, i.e. Fax

max~Max and Ft
max~Mat. Below,

we show that generally axÞat. The exponents ax and at will be
deduced from experimental data on the scaling of muscle force,
ground reaction force and direct measurements of the forces
acting on a long bone.

We now show how the scale-invariance of bone mechanical
properties, safety factor and ratio K lead to the power-law
dependence of bone dimensions on body mass (Equation·1).
For f<1, the bone fails when the maximum stresses reach the
yield limit. Since yield stresses and safety factors are body-
mass-independent [assumptions (c) and (e)], equation·8
implies that Fax

max~A. Substituting A~D2~M2d, we find the
scaling relation 2d=ax [here we have used assumption (f)].

Equation·3 implies that the maximum transverse force
acting on a bone is Ft

(max)~σb
(max)I/DL. From Equation·7 we

have that the maximum bending stress σb
(max) in bone is

σb
(max)=(1–c)σcomp yield/2Sf, which is body-mass-independent.

Consequently Ft
(max)~I/DL~M3d–1 and, since Ft

(max)~Mat, we
have our second scaling relation, which is 3d–l=at. Therefore
the scaling exponents for non-gracile bones are:

In order to estimate d and l, we use the experimental values
of ax and at. Although McMahon assumed that Fbuckling=Fax~M
(ax=1) (McMahon, 1973, 1975a), the loading situation of a long
bone is not so simple. The usual procedure (Alexander, 1974;
Alexander et al., 1979a; Biewener, 1983b) to evaluate the forces
acting on bones using force platform recordings is to equate the
moments exerted by muscle force (Fmuscle) and ground reaction
force (Fground): Fmuscler=FgroundR, where r and R are the
moment arms defined in Fig.·2. The forces exerted in a bone
can then be written as Fax=Fmusclecos(αm)+Fgroundcos(αg) and
Ft=–Fmusclesin(αm)+ Fgroundsin(αg), where αm and αg are
measured with respect to the bone longitudinal axis. Since
muscle forces are almost parallel to the bone axis (αm<10°)
and Fmuscle@Fgroundcos(αg), because cos(αg)<1 and, in general,
r<R, we assume Fax~Fmuscleand Ft~Fgroundsin(αg).

The scaling of Fax is determined in three different ways.
First, it appears that maximum muscle stress is approximately
independent of body mass (Schmidt-Nielsen, 1990), which
implies that muscle force is proportional to muscle area, so
that Fmuscle~Amuscle~Ma. We have collected and calculated
averages of muscle-area allometric exponents from several
sources. The results are as follows: a=0.77 for antelopes
(Alexander, 1977), a=0.83 for insectivores and rodents
(Castiella and Casinos, 1990), a=0.78 for rodents (Druzinsky,

and l = (14)d= −at .
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Fig.·2. A simplified loading situation. R is the moment arm of the
ground force (Fground), while r is the moment arm of the muscle force
(Fmuscle). Figure modified from Biewener (1989).
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1993) and a=0.80 and 0.81 for mammals as a whole
(Alexander et al., 1981; Pollock and Shadwick, 1994). We note
that mammals of very different body masses, such as rodents
and antelopes, exhibit similar behavior, with muscle area
scaling on average as M0.80(individual muscle exponents range
from 0.65 to 0.92). Second, measuring the effective mechanical
advantage (EMA=r/R~M0.26) and using his previous result that
Fground~M in small mammals, Biewener (1989) reported that
Fmuscle~M0.74 and predicted maximum muscle stress to scale
as M−0.06, a prediction that has yet to be confirmed. (Note that
this result is consistent with the scaling of muscle force and
area mentioned above). Third, the only direct estimate of ax

that we are aware of was given by Rubin and Lanyon (1984)
and, although based in a small sample (5 species), provides a
value (ax=0.69) consistent with the scaling of muscle force.
These results allow us to predict:

d≈ 0.37·, (15)

since ax≈0.74. This is in good agreement with experimental
values, as shown in Tables·1 and 2. Notice that even if we
choose the highest (ax≈0.80) or the lowest (ax≈0.69)
estimates for the allometric exponent of axial force, the
predicted value for d, namely 0.69<2d<0.80, is still in the
experimental range.

The experimental exponents presented in Table·1 were taken
or calculated from Christiansen (1999b). We chose these data
for two reasons: (i) they represent the most extensive sample,
and (ii) animals with similar locomotor modes are included.
(Note that Christiansen’s data has an inconvenience, namely,
animals of mass <1·kg are not included.) The agreement of
the predicted value of d with the experimental exponents
reinforces that long-bone allometry is governed by the need
to resist compressive and bending stresses. Notice that the

correlation coefficients are much higher when we consider
only non-gracile ulnae and fibulae.

In contrast to the assumption of McMahon (1973, 1975a)
that bone mass is proportional to body mass (D2L~M),
Christiansen (2002) has recently shown that bone mass scales
with slight positive allometry (on average, bone mass scales as
M1.06 using the rma method). Indeed, the assumption D2L~M
together with our result d≈0.37 leads to a poor prediction of
the bone length exponent (l≈0.26) in comparison to the
experimental value (l≈0.30) (Table·1). Therefore the positive
scaling of long-bone mass, although weak, cannot be ignored.
This point has already been noted by Hokkanen (1986).

Here we make a digression regarding the pioneering work
of Prange and collaborators (1979) on the scaling of
mammalian skeletal mass (Mskeletal). Since their work was
published, it has been widely cited as evidence that mammalian
skeletal mass scales with positive allometry (for instance, see
Schmidt-Nielsen, 1984). Their data, however, is not entirely
conclusive. Among the 49 mammals used in the study, only
the elephant has a body mass above 70·kg. Moreover, it seems
that man and dog have skeletal masses above the values
expected for their body masses. Fitting their data for the 44
mammals with masses less than 12·kg using the least-square
regression method, we find Mskeletal=0.061M1.02, r=0.993.
(Note that rma analysis would not change this result
appreciably due to the high correlation coefficient.) In
agreement with this result, Bou and Casinos (1985) found that
Mskeletal=0.04225M1.0143, r=0.993, in insectivores and rodents.
Therefore, experimental data indicates that skeletal mass is
proportional to body mass for mammals smaller than 12·kg. It
is necessary to collect more data in the gap between 67·kg
(man) and 6600·kg (elephant) in order to obtain a more reliable
equation for the whole group of mammals. Finally, we note

Table·1. Bone length and diameter scaling exponentsl and d for the main long-bones

Scaling exponents

Bone l lsr/lrma dlsr/drma 2d 3d–l r l rd

All mammals
Femur 0.301/0.309 0.355/0.360 0.710/0.720 0.764/0.771 0.976 0.986
Tibia 0.257/0.277 0.360/0.365 0.720/0.730 0.823/0.818 0.929 0.985
Fibula 0.225/0.243 0.338/0.368 0.676/0.736 0.789/0.861 0.926 0.918
Humerus 0.300/0.311 0.382/0.386 0.764/0.772 0.846/0.847 0.964 0.989
Radius 0.300/0.321 0.387/0.401 0.774/0.802 0.861/0.882 0.933 0.964
Ulna 0.302/0.318 0.355/0.458 0.710/0.916 0.763/1.056 0.949 0.776
Average 1 0.281/0.297 0.363/0.390 0.726/0.779 0.808/0.873 − −
Average 2 0.290/0.305 0.371/0.378 0.742/0.756 0.824/0.830 − −

Non-gracile mammals only
Fibula 0.235/0.241 0.279/0.286 0.558/0.572 0.602/0.617 0.979 0.978
Ulna 0.288/0.298 0.376/0.383 0.752/0.766 0.840/0.851 0.966 0.980

Average 1, mean for all the 6 bones; average 2, mean for femur, tibia, humerus and radius. 
Below are the values of the exponents for non-gracile (L/D<26) ulnae and fibulae.
The data were taken from Christiansen (1999b). 
The exponents are given for both methods: least square regression (lsr) and reduced major axis (rma). r l and rd are the correlation

coefficients. For further explanation, see text. 
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that different bones scale with different allometric exponents.
While long-bone masses scale with significant positive
allometry (Bou and Casinos, 1985; Christiansen, 2002), the
masses of other bones, such as the skull, scale with significant
negative allometry (Bou and Casinos, 1985).

It was relatively easy to estimate ax. By contrast, the
exponent at is more difficult to evaluate because it depends on
the scaling of ground reaction force (Fground) and experimental
reports for this are scarce. As stated above (The model),
maximum stresses may occur in different activities, such as
galloping at top speed, jumping and acceleration. Here we
evaluate the exponent at only during top speed locomotion,
since we did not find any experimental data for the scaling of
Fgroundin jumping nor in accelerating. Nevertheless, this does
not seem to be a shortcoming, since maximum tensile stresses
during top speed locomotion maintain the same safety factor
to yield that are kept by compressive stresses (Biewener, 1989,
1990, 1991; Lanyon et al., 1979; Biewener and Taylor, 1986).
This means that, although the magnitude of ground reaction
forces may be larger during acceleration or jumping in
comparison to top speed locomotion, the allometric exponent
at is probably the same for these three vigorous activities.

Large ground reaction forces occur during top speed
locomotion and are known to scale as M/β, where β is the duty
factor (fraction of the stride during which a foot touches the
ground). Alexander et al. (1977) reported that in ungulates,
β~M−0.11 (rβ=0.79) for the fore feet and β~M−0.14 (rβ=0.78)
for the hind feet. When analyzing allometric data, the least-
square regression (lsr) method is not expected to be the most
appropriate, since it assumes that error is present only in the
dependent variable. Reduced major axis (rma) analysis is to be
preferred because it takes the uncertainties of both variables

into account (Christiansen, 1999a,b; Sokal, 1981). Reanalysing
Alexander’s data using rma, we obtain the exponents −0.14 and
−0.18, for fore and hind feet, respectively. Since there is no
apparent posture change in large mammals (Biewener, 1989,
1990), we assume that the angle αg is constant; then at≈0.84
for these animals. This estimate implies that l=3d–at≈0.27 in
large mammals, in reasonable agreement with the experimental
data (see Table·2). On the other hand, small mammals change
posture from a crouched to a more upright position (Biewener,
1989, 1990), and consequently the angle αg diminishes with
increasing body mass (αg~M–0.07 in small mammals at the
trot–gallop transition speed; Biewener, 1983a). As already
mentioned, Biewener reported that Fground~M1.0 in this group
at top galloping speed. Thus, considering that αg scales at top
velocity in the same manner as at the trot–gallop transition
speed, one predicts that at≈0.93 in small mammals. This result,
however, does not agree with the experimental data. The
calculation of at for small mammals needs further study, as
discussed below.

Selker and Carter (1989) found that at=3d–l≈0.80 using their
data for bone dimensions of artiodactyla, and Biewener’s of
mammals. Knowing that muscle force scales approximately as
M0.80, they concluded that the transverse component of force is
proportional to muscle force (Ft~Fmuscle). However, this
conclusion is in contrast with the widely accepted analysis
(Alexander, 1974; Alexander et al., 1979a; Biewener, 1983b)
of the loading situation in legs, which led us to the conclusion
that the transverse component of force (Ft) is proportional to
ground reaction force, not muscle force. Moreover, if we accept
Ft~Fmuscle, we would conclude that ax=at and sol=d≈0.37.
Although this is a reasonable result for small mammals (see
Table·2), large mammals do not follow this relation. In order to
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Table·2. Experimental values ofl and d for non-gracile long bones (L/D<26) using data obtained from various sources

Alexander Bertram and Biewener Christiansen

Bone l lsr/lrma dlsr/drma l lsr/lrma dlsr/drma l lsr/lrma dlsr/drma

Small mammals (M<50·kg)
Femur 0.398/0.404 0.369/0.371 0.372/0.384 0.380/0.392 0.327/0.342 0.344/0.362
Tibia 0.344/0.350 0.379/0.383 0.362/0.376 0.388/0.403 0.343/0.364 0.373/0.387
Humerus 0.393/0.399 0.382/0.384 0.382/0.395 0.391/0.405 0.321/0.351 0.386/0.401
Radius − − 0.397/0.419 0.394/0.414 0.364/0.407 0.453/0.481
Ulna 0.383/0.389 − − − 0.288/0.336 0.371/0.406
Average 2 0.378/0.384 0.377/0.379 0.378/0.394 0.388/0.404 0.339/0.366 0.389/0.408

Large mammals (M>50·kg)
Femur 0.325/0.385 0.315/0.329 0.284/0.326 0.308/0.344 0.280/0.310 0.354/0.367
Tibia 0.198/0.248 0.304/0.334 0.142/0.207 0.315/0.358 0.203/0.279 0.338/0.356
Humerus 0.323/0.371 0.365/0.381 0.286/0.327 0.320/0.358 0.288/0.323 0.359/0.370
Radius − − 0.225/0.297 0.430/0.473 0.275/0.346 0.311/0.362
Ulna 0.282/0.319 − − − 0.255/0.290 0.405/0.431
Average 2 0.282/0.335 0.328/0.348 0.234/0.289 0.343/0.383 0.262/0.311 0.341/0.364

Data was taken from Alexander et al. (1979b), Biewener (1983a), Bertram and Biewener (1992) and Christiansen (1999a,b).
Mammals are considered small or large relative to M=50·kg, as proposed by Christiansen (1999b).
Average 2 is the mean defined in Table·1.
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solve this puzzle, more data are needed on the scaling of
maximum muscle stress, bone mechanical properties and duty
factor to confirm if they are mass-independent or if they exhibit
a small, but relevant, variation with size. It is also very
important to measure at experimentally, as Rubin and Lanyon
(1984) did for ax, and also to improve the measurement of ax,
presently based on strain data for only five species (see
discussion above). We recognize that those experiments are
difficult, because rosette strain gauges can only be used to
record strains from bones of a certain size – very small bones
cannot be studied in this way. Nevertheless, the arguments
presented here show that, in order to completely describe long-
bone allometry, one needs to determine which are the forces
applied on bone andtheir scaling with body mass.

Finally, the model presented here accounts for two further
important aspects of bone allometry not explained by
McMahon’s elastic similarity (McMahon, 1973, 1975a). First,
it has been realized that long-bone allometry exhibits different
scaling regimes for small and large mammals (Table·2) and that
this should be related to a posture change found mainly in small
mammals and to the reduced locomotor performance of large
mammals (Economos, 1983; Biewener, 1989, 1990; Bertram
and Biewener, 1990; Christiansen, 1999a,b). Our model
confirms this distinction between regimes by coupling the
allometric exponents with ground reaction forces, and angles of
force to bone, both of which are body-mass dependent. (Note
that this coupling makes it possible to study the forces involved
in the locomotion of extinct species, such as dinosaurs, using
bone-allometry data.) Second, Christiansen reported that large
mammals develop progressively shorterlimb bones as a means
of reducing bending stress, rather than proportionally thicker
bones (Christiansen, 1999b). This fact is a direct consequence
of our analysis. We have shown that Fax~Fmuscle and that
muscle–force allometry does not distinguish small and large
mammals. Thus Equation·14 implies that d must have similar
values for all mammals and, therefore, differential scaling can
only appear in differences of l.

Conclusions
In summary, we propose a model that predicts scaling

exponents in agreement with experiment, and that also
accounts for the other important features of mammalian long-
bone allometry. Those results have not been explained by any
previous model. In particular, we elucidate why McMahon’s
elastic similarity model is not obeyed, a long-standing puzzle
in this field. Our model sets the direction for the description of
avian and reptile long-bone allometry and provides a means to
study the problem of terrestrial locomotion of extinct and
extant species.
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work and Ronald Dickman for a careful reading of the
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